Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cerebrovasc Endovasc Neurosurg ; 22(2): 90-96, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32665916

RESUMO

Infectious intracranial aneurysm (IIA), a rare type of cerebral aneurysm, is often observed in patients with infective endocarditis. Hemorrhage or infarction often occurs; however, the presentation of both hemorrhagic and ischemic components is rare. A 41-year-old man with progressive motor weakness, dysarthria, and severe headache was admitted to our hospital. Brain computed tomography scan revealed a scanty subarachnoid hemorrhage (SAH), and diffusion magnetic resonance imaging confirmed acute cerebral infarction around the external capsule and insular lobe. A digital subtraction cerebral angiogram revealed an obstruction in the middle cerebral artery (MCA). The patient's neurological symptoms improved remarkably on the fifth day, and a follow-up angiogram revealed recanalized MCA with pseudoaneurysm, which was not observed on the previous angiogram. A blood culture result confirmed bacteremia, and the patient was then diagnosed with infective endocarditis. The pseudoaneurysm was treated with anastomosis of the superficial temporal artery and MCA with trapping of the parent artery. He was discharged with no neurological deficits. Herein, we present a patient with IIA, who sequentially developed SAH and cerebral infarction, and underwent extracranial-intracranial bypass with trapping of the parent artery. Although the treatment strategy for IIA is controversial, the treatment plan should be cautiously discussed with the patient. In addition, the assessment of an underlying infectious disease is required.

2.
Nat Plants ; 3: 17057, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28481327

RESUMO

Plants can acclimate by using tropisms to link the direction of growth to environmental conditions. Hydrotropism allows roots to forage for water, a process known to depend on abscisic acid (ABA) but whose molecular and cellular basis remains unclear. Here we show that hydrotropism still occurs in roots after laser ablation removed the meristem and root cap. Additionally, targeted expression studies reveal that hydrotropism depends on the ABA signalling kinase SnRK2.2 and the hydrotropism-specific MIZ1, both acting specifically in elongation zone cortical cells. Conversely, hydrotropism, but not gravitropism, is inhibited by preventing differential cell-length increases in the cortex, but not in other cell types. We conclude that root tropic responses to gravity and water are driven by distinct tissue-based mechanisms. In addition, unlike its role in root gravitropism, the elongation zone performs a dual function during a hydrotropic response, both sensing a water potential gradient and subsequently undergoing differential growth.


Assuntos
Raízes de Plantas/crescimento & desenvolvimento , Tropismo , Ácido Abscísico/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/citologia , Transdução de Sinais
3.
J Ginseng Res ; 38(3): 220-5, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25378998

RESUMO

An efficient in vitro protocol has been established for somatic embryogenesis and plantlet conversion of Korean wild ginseng (Panax ginseng Meyer). Wild-type and mutant adventitious roots derived from the ginseng produced calluses on Murashige and Skoog (MS) medium supplemented with 0.5 mg/L 2,4-dichlorophenoxyacetic acid and 0.3 mg/L kinetin; 53.3% of the explants formed callus. Embryogenic callus proliferation and somatic embryo induction occurred on MS medium containing 0.5 mg/L 2,4-dichlorophenoxyacetic acid. The induced somatic embryos further developed to maturity on MS medium with 5 mg/L gibberellic acid, and 85% of them germinated. The germinated embryos were developed to shoots and elongated on MS medium with 5 mg/L gibberellic acid. The shoots developed into plants with well-developed taproots on one-third strength Schenk and Hildebrandt basal medium supplemented with 0.25 mg/L 1-naphthaleneacetic acid. When the plants were transferred to soil, about 30% of the regenerated plants developed into normal plants.

4.
Planta ; 236(4): 1135-50, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22644765

RESUMO

Phytochrome A (phyA) in higher plants is known to function as a far-red/shade light-sensing photoreceptor in suppressing shade avoidance responses (SARs) to shade stress. In this paper, the Avena PHYA gene was introduced into creeping bentgrass (Agrostis stolonifera L.) and zoysiagrass (Zoysia japonica Steud.) to improve turf quality by suppressing the SARs. In addition to wild-type PHYA, a hyperactive mutant gene (S599A-PHYA), in which a phosphorylation site involved in light-signal attenuation was removed, was also transformed into the turfgrasses. Phenotypic traits of the transgenic plants were compared to assess the suppression of SARs under a simulated shade condition and outdoor field conditions after three growth seasons. Under the shade condition, the S599A-PhyA transgenic creeping bentgrass plants showed shade avoidance-suppressing phenotypes with a 45 % shorter leaf lengths, 24 % shorter internode lengths, and twofold increases in chlorophyll concentrations when compared with control plants. Transgenic zoysiagrass plants overexpressing S599A-PHYA also showed shade-tolerant phenotypes under the shade condition with reductions in leaf length (15 %), internode length (30 %), leaf length/width ratio (19 %) and leaf area (22 %), as well as increases in chlorophyll contents (19 %) and runner lengths (30 %) compared to control plants. The phenotypes of transgenic zoysiagrass were also investigated in dense field habitats, and the transgenic turfgrass exhibited shade-tolerant phenotypes similar to those observed under laboratory shade conditions. Therefore, the present study suggests that the hyperactive phyA is effective for the development of shade-tolerant plants, and that the shade tolerance nature is sustained under field conditions.


Assuntos
Agrostis/genética , Agrostis/fisiologia , Fitocromo A/genética , Poaceae/fisiologia , Agrostis/crescimento & desenvolvimento , Agrostis/efeitos da radiação , Southern Blotting , Clorofila/análise , Clorofila/metabolismo , Transporte de Elétrons , Fluorescência , Expressão Gênica , Luz , Microscopia Eletrônica de Varredura , Mutação , Fenótipo , Fosforilação , Fitocromo A/fisiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Feixe Vascular de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Poaceae/efeitos da radiação
5.
J Microbiol Biotechnol ; 21(4): 333-40, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21532315

RESUMO

Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P〈0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.


Assuntos
Bactérias/isolamento & purificação , Plantas Geneticamente Modificadas/microbiologia , Poaceae/genética , Poaceae/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Biodiversidade , Transferência Genética Horizontal , Herbicidas/farmacologia , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Rizosfera
6.
J Ginseng Res ; 35(3): 283-93, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23717071

RESUMO

With the purpose of improving ginsenoside content in adventitious root cultures of Korean wild ginseng (Panax ginseng Meyer), the roots were treated with different dosages of γ-ray (5, 10, 25, 50, 75, 100, and 200 Gy). The growth of adventitious roots was inhibited at over 100 Gy. The irradiated adventitious roots showed significant variation in the morphological parameters and crude saponin content at 50 to100 Gy. Therefore, four mutant cell lines out of the propagation of 35 cell lines treated with 50 Gy and 100 Gy were selected on the basis of phenotypic morphology and crude saponin contents relative to the wild type control. The contents of 7 major ginsenosides (Rg1, Re, Rb1, Rb2, Rc, Rf, and Rd) were determined for cell lines 1 and 3 from 100 Gy and lines 2 and 4 from 50 Gy treatments. Cell line 2 showed more secondary roots, longer length and superior growth rate than the root controls in flasks and bioreactors. Cell line 1 showed larger average diameter and the growth rate in the bioreactor was comparable with that of the control but greater in the flask cultured roots. Cell lines 1 and 2, especially the former, showed much more ginsenoside contents than the control in flasks and bioreactors. Therefore, we chose cell line 1 for further study of ginsenoside contents. The crude saponin content of line 1 in flask and bioreactor cultures increased by 1.4 and 1.8-fold, respectively, compared to the control. Total contents of 7 ginsenoside types (Rg1, Re, Rb1, Rb2, Rc, Rf, and Rd) increased by 1.8 and 2.3-fold, respectively compared to the control. Crude saponin and ginsenoside contents in the bioreactor culture increased by about 1.4-fold compared to that the flask culture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...