Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ground Water ; 56(5): 797-809, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29193024

RESUMO

The composition of crude oil in a surficial aquifer was determined in two locations at the Bemidji, MN, spill site. The abundances of 71 individual hydrocarbons varied within 16 locations sampled. Little depletion of these hydrocarbons (relative to the pipeline oil) occurred in the first 10 years after the spill, whereas losses of 25% to 85% of the total measured hydrocarbons occurred after 30 years. The C6-30 n-alkanes, toluene, and o-xylene were the most depleted hydrocarbons. Some hydrocarbons, such as the n-C10-24 cyclohexanes, tri- and tetra- methylbenzenes, acyclic isoprenoids, and naphthalenes were the least depleted. Benzene was detected at every sampling location 30 years after the spill. Degradation of the oil led to increases in the percent organic carbon and in the δ 13 C of the oil. Another method of determining hydrocarbon loss was by normalizing the total measured hydrocarbon concentrations to that of the most conservative analytes. This method indicated that the total measured hydrocarbons were depleted by 47% to 77% and loss of the oil mass over 30 years was 18% to 31%. Differences in hydrocarbon depletion were related to the depth of the oil in the aquifer, local topography, amount of recharge reaching the oil, availability of electron acceptors, and the presence of less permeable soils above the oil. The results from this study indicate that once crude oil has been in the subsurface for a number of years there is no longer a "starting oil concentration" that can be used to understand processes that affect its fate and the transport of hydrocarbons in groundwater.


Assuntos
Água Subterrânea , Petróleo , Poluentes Químicos da Água , Monitoramento Ambiental , Hidrocarbonetos
2.
Environ Sci Technol ; 51(21): 12139-12145, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28942635

RESUMO

In January 2014, approximately 37 800 L of crude 4-methylcyclohexanemethanol (crude MCHM) spilled into the Elk River, West Virginia. To understand the long-term fate of 4-MCHM, we conducted experiments under environmentally relevant conditions to assess the potential for the 2 primary compounds in crude MCHM (1) to undergo biodegradation and (2) for sediments to serve as a long-term source of 4-MCHM. We developed a solid phase microextraction (SPME) method to quantify the cis- and trans-isomers of 4-MCHM. Autoclaved Elk River sediment slurries sorbed 17.5% of cis-4-MCHM and 31% of trans-4-MCHM from water during the 2-week experiment. Sterilized, impacted, spill-site sediment released minor amounts of cis- and up to 35 µg/L of trans-4-MCHM into water, indicating 4-MCHM was present in sediment collected 10 months post spill. In anoxic microcosms, 300 µg/L cis- and 150 µg/L trans-4-MCHM degraded to nondetectable levels in 8-13 days in both impacted and background sediments. Under aerobic conditions, 4-MCHM isomers degraded to nondetectable levels within 4 days. Microbial communities at impacted sites differed in composition compared to background samples, but communities from both sites shifted in response to crude MCHM amendments. Our results indicate that 4-MCHM is readily biodegradable under environmentally relevant conditions.


Assuntos
Biodegradação Ambiental , Cicloexanos , Poluentes Químicos da Água , Sedimentos Geológicos , Rios , West Virginia
3.
J Contam Hydrol ; 164: 1-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24908586

RESUMO

Secondary water quality impacts can result from a broad range of coupled reactions triggered by primary groundwater contaminants. Data from a crude-oil spill research site near Bemidji, MN provide an ideal test case for investigating the complex interactions controlling secondary impacts, including depleted dissolved oxygen and elevated organic carbon, inorganic carbon, CH4, Mn, Fe, and other dissolved ions. To better understand these secondary impacts, this study began with an extensive data compilation of various data types, comprising aqueous, sediment, gas, and oil phases, covering a 260m cross-sectional domain over 30years. Mass balance calculations are used to quantify pathways that control secondary components, by using the data to constrain the sources and sinks for the important redox processes. The results show that oil constituents other than BTEX (benzene, toluene, ethylbenzene, o-, m- and p-xylenes), including n-alkanes and other aromatic compounds, play significant roles in plume evolution and secondary water quality impacts. The analysis underscores previous results on the importance of non-aqueous phases. Over 99.9% of the Fe(2+) plume is attenuated by immobilization on sediments as Fe(II) and 85-95% of the carbon biodegradation products are outgassed. Gaps identified in carbon and Fe mass balances and in pH buffering mechanisms are used to formulate a new conceptual model. This new model includes direct out-gassing of CH4 and CO2 from organic carbon biodegradation, dissolution of directly produced CO2, and sorption with H(+) exchange to improve pH buffering. The identification of these mechanisms extends understanding of natural attenuation of potential secondary impacts at enhanced reductive dechlorination sites, particularly for reduced Fe plumes, produced CH4, and pH perturbations.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Modelos Químicos , Poluição por Petróleo/análise , Petróleo , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Minnesota , Qualidade da Água
4.
J Contam Hydrol ; 126(3-4): 140-52, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22115081

RESUMO

The light nonaqueous phase liquid (LNAPL) oil pool in an aquifer that resulted from a pipeline spill near Bemidji, Minnesota, was analyzed for volatile hydrocarbons (VHCs) to determine if the composition of the oil remains constant over time. Oil samples were obtained from wells at five locations in the oil pool in an anaerobic part of the glacial outwash aquifer. Samples covering a 21-year period were analyzed for 25 VHCs. Compared to the composition of oil from the pipeline source, VHCs identified in oil from wells sampled in 2008 were 13 to 64% depleted. The magnitude of loss for the VHCs analyzed was toluene≫o-xylene, benzene, C(6) and C(10-12)n-alkanes>C(7)-C(9)n-alkanes>m-xylene, cyclohexane, and 1- and 2-methylnaphthalene>1,2,4-trimethylbenzene and ethylbenzene. Other VHCs including p-xylene, 1,3,5- and 1,2,3-trimethylbenzenes, the tetramethylbenzenes, methyl- and ethyl-cyclohexane, and naphthalene were not depleted during the time of the study. Water-oil and air-water batch equilibration simulations indicate that volatilization and biodegradation is most important for the C(6)-C(9)n-alkanes and cyclohexanes; dissolution and biodegradation is important for most of the other hydrocarbons. Depletion of the hydrocarbons in the oil pool is controlled by: the lack of oxygen and nutrients, differing rates of recharge, and the spatial distribution of oil in the aquifer. The mass loss of these VHCs in the 5 wells is between 1.6 and 7.4% in 29years or an average annual loss of 0.06-0.26%/year. The present study shows that the composition of LNAPL changes over time and that these changes are spatially variable. This highlights the importance of characterizing the temporal and spatial variabilities of the source term in solute-transport models.


Assuntos
Hidrocarbonetos/análise , Petróleo/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Água Subterrânea/química , Hidrocarbonetos/química , Modelos Químicos , Reprodutibilidade dos Testes , Volatilização , Poluentes Químicos da Água/química
6.
Ground Water ; 17(5): 429-437, 1979 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29776308

RESUMO

Chemical and isotopic analyses were made of water from wells in and downgradient from a landfill to determine chemical and isotopic effects of generation and migration of leachate on ground water. The distribution and wide concentration range of oxygen and methane permit the delineation of an anaerobic zone, a regional oxygenated zone and an intermediate zone. The ratio of reduced nitrogen to nitrate indicates location of reducing fronts as the leachate migrates. The pH of the native ground water is low (≥5.0) primarily because of the low pH of rainfall and the lack of calcareous or other soluble minerals in the aquifer material. The pH is higher (∼6.6) in the leachate because of generation of carbon dioxide, ammonia, and methane. The native ground water has a low TDS (80 mg/l) while the leachate has an average TDS of 2800 mg/l and is primarily a NaHCO3 type water. Sulfate concentrations are extremely low and H2 S was not detected. We suggest that a major source of cations may be their exchange from the clays by the ammonium generated in the leachate. High concentrations of Fe and Mn are attributed to a source in the refuse but more important to reduction of oxide cements and coatings resulting from degradation of organic matter. The main source of bicarbonate is from organic degradation with minimal CO2 from the soil zone. At one landfill site 52% of the total alkalinity is attributed to organic compounds, mainly organic acid anions. The δ13 C of bicarbonate in the leachate is exceedingly heavy (+18.400 /00 ) which results from fractionation during the formation of methane. The 10 per mil deuterium enrichment of water may be due to decomposition of deuterium-enriched compounds and bacterial processes that preferentially consume the lighter hydrogen isotope.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...