Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(42): 13663-13671, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30351135

RESUMO

Achieving a molecular level understanding of chemical reactions on the surface of solid-state nanomaterials is important, but challenging. For example, the fully saturated basal plane is believed to be practically inert and its surface chemistry has been poorly explored, while two-dimensional (2D) layered transition-metal chalcogenides (TMCs) display unique reactivities due to their unusual anisotropic nature, where the edges consisting of unsaturated metals and chalcogens are sites for key chemical reactions. Herein, we report the use of Lewis acids/bases to elucidate the chemical reactivity of the basal plane in 2D layered TMCs. Electrophilic addition by Lewis acids (i.e., AlCl3) selectively onto sulfides in the basal plane followed by transmetalation and subsequent etching affords nanopores where such chemical activations are initiated and propagated from the localized positions of the basal plane. This new method of surface modification is generally applicable not only to various chemical compositions of TMCs, but also in crystal geometries such as 1T and 2H. Nanoporous NbS2 obtained by this method was found to have an enhanced electrochemical energy storage capacity, offering this chemical strategy to obtain functional 2D layered nanostructures.

2.
Chem Commun (Camb) ; 54(72): 10052-10055, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30124710

RESUMO

Stochastic collisions of aqueous nanodroplets (AnDs) on a microelectrode were observed in situ by electrochemistry. Reduction of Cu2+ ions enclosed in the reacting AnDs resulted in surfactant-free synthesis of copper nanoparticles on the electrode surface. The particle size distribution was reasonably controllable by the modulation of electrode voltage. The versatility of the synthetic method was established by its application in synthesizing nanoparticles of silver and cobalt oxyhydroxide.

3.
Nano Lett ; 17(12): 7471-7477, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29076338

RESUMO

Because of the absence of native dangling bonds on the surface of the layered transition metal dichalcogenides (TMDCs), the surface of colloidal quantum dots (QDs) of TMDCs is exposed directly to the solvent environment. Therefore, the optical and electronic properties of TMDCS QDs are expected to have stronger influence from the solvent than usual surface-passivated QDs due to more direct solvent-QD interaction. Study of such solvent effect has been difficult in colloidal QDs of TMDC due to the large spectroscopic heterogeneity resulting from the heterogeneity of the lateral size or (and) thickness in ensemble. Here, we developed a new synthesis procedure producing the highly uniform colloidal monolayer WS2 QDs exhibiting well-defined photoluminescence (PL) spectrum free from ensemble heterogeneity. Using these newly synthesized monolayer WS2 QDs, we observed the strong influence of the aromatic solvents on the PL energy and intensity of monolayer WS2 QD beyond the simple dielectric screening effect, which is considered to result from the direct electronic interaction between the valence band of the QDs and molecular orbital of the solvent. We also observed the large effect of stacking/separation equilibrium on the PL spectrum dictated by the balance between inter QD and QD-solvent interactions. The new capability to probe the effect of the solvent molecules on the optical properties of colloidal TMDC QDs will be valuable for their applications in various liquid surrounding environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...