Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8356, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594291

RESUMO

We demonstrate a highly biomimetic spiking neuron capable of fast and energy-efficient neuronal oscillation dynamics. Our simple neuron circuit is constructed using silicon-germanium heterojunction based bipolar transistors (HBTs) with nanowire structure. The HBT has a hysteresis window with steep switching characteristics and high current margin in the low voltage range, which enables a high spiking frequency (~ 245 kHz) with low energy consumption (≤ 1.37 pJ/spike). Also, gated structure achieves a stable balance in the activity of the neural system by incorporating both excitatory and inhibitory signal. Furthermore, inhibition of multiple strengths can be realized by adjusting the integration time according to the amplitude of the inhibitory signal. In addition, the spiking frequency can be tuned by mutually controlling the hysteresis window in the HBTs. These results ensure the sparse activity and homeostasis of neural networks.

2.
Opt Express ; 31(23): 38013-38023, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017919

RESUMO

We demonstrate a near-infrared (NIR) photodiode (PD) by using a wave-shaped sidewall silicon nanopillars (WS-SiNPs) structure. The designed WS sidewall nanostructure increases the horizontal component of incident light and induces multiple whispering-gallery modes with low-quality factor, which increases the light absorption path. Thus, the WS-SiNP PD shows improved spectral responsivity and external quantum efficiency over straight sidewall silicon nanopillars and planar PDs in the NIR region. Especially, the peak responsivity of 0.648 A/W is achieved at a wavelength of 905 nm, which is used for light detection and ranging. Comparison with commercial photodiodes demonstrates the good optoelectrical characteristics of the fabricated device. The improved characteristics are validated by 3D finite differential time domain simulations. Based on these results, our device shows the potential for cost-effective Si-based optoelectronic devices to be utilized in future advanced applications.

3.
Sci Rep ; 12(1): 20578, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446863

RESUMO

The simple structure, low power consumption, and small form factor have made surface acoustic wave (SAW) devices essential to mobile communication as RF filters. For instance, the latest 5G smartphones are equipped with almost 100 acoustic wave filters to select a specific frequency band and increase communication capacity. On the arrival of the newest communication standard, 5G, mm-band up to 39 GHz is supposed to be utilized, whereas the conventional SAW filters are limited to below 3 GHz, leaving a critical component missing. Here, we show an emerging 2D material-hexagonal boron nitride-can become a key enabler of mm-band SAW filter. Our study, based on first principles analysis and acousto-electric simulation, shows the operating frequency of SAW devices can reach over 20 GHz in its fundamental mode and 40 GHz in its interface mode with high electromechanical coupling coefficient (K2) and low insertion loss. In addition to the orders of magnitude improvement compared to the conventional SAW devices, our study provides a systematic approach to utilizing van der Waals crystals with highly anisotropic acoustic properties for practical applications.

4.
Nanoscale Res Lett ; 17(1): 28, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35195806

RESUMO

Three-terminal (3-T) thyristor random-access memory is explored for a next-generation high-density nanoscale vertical cross-point array. The effects of standby voltages on the device are thoroughly investigated in terms of gate-cathode voltage (VGC,ST) and anode-cathode voltage (VAC,ST) in the standby state for superior data retention characteristics and low-power operation. The device with the optimized VGC,ST of - 0.4 V and VAC,ST of 0.6 V shows the continuous data retention capability without refresh operation with a low standby current of 1.14 pA. In addition, a memory array operation scheme of 3-T TRAM is proposed to address array disturbance issues. The presented array operation scheme can efficiently minimize program, erase and read disturbances on unselected cells by adjusting gate-cathode voltage. The standby voltage turns out to be beneficial to improve retention characteristics: over 10 s. With the proposed memory array operation, 3-T TRAM can provide excellent data retention characteristics and high-density memory configurations comparable with or surpass conventional dynamic random-access memory (DRAM) technology.

5.
ACS Sens ; 5(12): 4081-4091, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33270427

RESUMO

Small molecules with no or little charge are considered to have minimal impact on signals measured by field effect transistor (FET) sensors. This fact typically excludes steroids from the family of analytes, detected by FETs. We present a portable multiplexed platform based on an array of nanowire sensors for label-free monitoring of daytime levels of the stress hormone cortisol in saliva samples, obtained from multiple donors. To achieve an effective quantification of the cortisol with FETs, we rely on the specific DNA aptamer sequences as receptors, bringing the complex "target-receptor" closer to the nanowire surface. Upon binding, cortisol induces conformational changes of negatively charged aptamers, wrapping it into a close proximity to the silicon nanowires, to efficiently modulate their surface potential. Thus, the sensors allow for a real-time assessment of the steroid biomarkers at low nanomolar concentration. The measurement platform is designed in a building-block concept, consisting of a modular measuring unit and a customizable biochip board, and operates using a complementary metal-oxide-semiconductor-integrated multiplexer. The platform is capable of continuous and simultaneous measurement of samples from multiple patients. Cortisol levels detected with the presented platform agreed well with the results obtained with a commercial high-sensitivity immunoassay.


Assuntos
Técnicas Biossensoriais , Nanofios , Biomarcadores , Humanos , Saliva , Transistores Eletrônicos
6.
Angew Chem Int Ed Engl ; 59(21): 8218-8224, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32039541

RESUMO

Despite the recent progress in the synthesis of crystalline boronate ester covalent organic frameworks (BECOFs) in powder and thin-film through solvothermal method and on-solid-surface synthesis, respectively, their applications in electronics, remain less explored due to the challenges in thin-film processability and device integration associated with the control of film thickness, layer orientation, stability and crystallinity. Moreover, although the crystalline domain sizes of the powder samples can reach micrometer scale (up to ≈1.5 µm), the reported thin-film samples have so far rather small crystalline domains up to 100 nm. Here we demonstrate a general and efficient synthesis of crystalline two-dimensional (2D) BECOF films composed of porphyrin macrocycles and phenyl or naphthyl linkers (named as 2D BECOF-PP or 2D BECOF-PN) by employing a surfactant-monolayer-assisted interfacial synthesis (SMAIS) on the water surface. The achieved 2D BECOF-PP is featured as free-standing thin film with large single-crystalline domains up to ≈60 µm2 and tunable thickness from 6 to 16 nm. A hybrid memory device composed of 2D BECOF-PP film on silicon nanowire-based field-effect transistor is demonstrated as a bio-inspired system to mimic neuronal synapses, displaying a learning-erasing-forgetting memory process.

7.
Nano Lett ; 19(2): 747-755, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30636421

RESUMO

Thermoelectric modules based on silicon nanowires (Si-NWs) have recently attracted significant attention as they show an improved thermoelectric efficiency due to a decrease in thermal conductivity. Here, we adopt a top-down fabrication method to dramatically reduce the thermal conductivity of vertical Si-NWs. The thermal conductivity of a vertical Si-NW is significantly suppressed with an increasing surface roughness, decreasing diameter, and increasing doping concentration. This large suppression is caused by enhanced phonon scattering, which depends on the phonon wavelength. The boron- and phosphorus-doped rough Si-NWs with a diameter of 200 nm and surface roughness of 6.88 nm show the lowest thermal conductivity of 10.1 and 14.8 W·m-1·K-1, respectively, which are 5.1- and 3.6-fold lower than that of a smooth intrinsic nanowire and 14.8- and 10.1-fold lower than that of bulk silicon. A thermoelectric module was fabricated using this doped rough Si-NW array, and its thermoelectric performance is compared with previously reported Si-NW modules. The fabricated module exhibits an excellent performance with an open circuit voltage of 216.8 mV·cm-2 and a maximum power of 3.74 µW·cm-2 under a temperature difference of 180 K, the highest reported for Si-NW thermoelectric modules.

8.
Nano Lett ; 17(11): 6727-6734, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28961014

RESUMO

We report the first observation of negative photoconductance (NPC) in n- and p-doped Si nanowire field-effect transistors (FETs) and demonstrate the strong influence of doping concentrations on the nonconventional optical switching of the devices. Furthermore, we show that the NPC of Si nanowire FETs is dependent on the wavelength of visible light due to the phonon-assisted excitation to multiple conduction bands with different band gap energies that would be a distinct optoelectronic property of indirect band gap semiconductor. We attribute the main driving force of NPC in Si nanowire FETs to the photogenerated hot electrons trapping by dopants ions and interfacial states. Finally, comparing back- and top-gate modulation, we derive the mechanisms of the transition between negative and positive photoconductance regimes in nanowire devices. The transition is decided by the competition between the light-induced interfacial trapping and the recombination of mobile carriers, which is dependent on the light intensity and the doping concentration.

9.
Sci Rep ; 7: 41142, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112273

RESUMO

We propose three-terminal core-shell (CS) silicon vertical nanowire tunneling field-effect transistors (TFETs), which can be fabricated by conventional CMOS technology. CS TFETs show lower subthreshold swing (SS) and higher on-state current than conventional TFETs through their high surface-to-volume ratio, which increases carrier-tunneling region with no additional device area. The on-state current can be enhanced by increasing the nanowire height, decreasing equivalent oxide thickness (EOT) or creating a nanowire array. The off-state current is also manageable for power saving through selective epitaxial growth at the top-side nanowire region. CS TFETs with an EOT of 0.8 nm and an aspect ratio of 20 for the core nanowire region provide the largest drain current ranges with point SS values below 60 mV/dec and superior on/off current ratio under all operation voltages of 0.5, 0.7, and 1.0 V. These devices are promising for low-power applications at low fabrication cost and high device density.

10.
ACS Appl Mater Interfaces ; 7(38): 21263-9, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26381613

RESUMO

Gas sensors based on metal-oxide-semiconductor transistor with the polysilicon gate replaced by a gas sensitive thin film have been around for over 50 years. These are not suitable for the emerging mobile and wearable sensor platforms due to operating voltages and powers far exceeding the supply capability of batteries. Here we present a novel approach to decouple the chemically sensitive region from the conducting channel for reducing the drive voltage and increasing reliability. This chemically gated field effect transistor uses silicon nanowire for the current conduction channel with a tin oxide film on top of the nanowire serving as the gas sensitive medium. The potential change induced by the molecular adsorption and desorption allows the electrically floating tin oxide film to gate the silicon channel. As the device is designed to be normally off, the power is consumed only during the gas sensing event. This feature is attractive for the battery operated sensor and wearable electronics. In addition, the decoupling of the chemical reaction and the current conduction regions allows the gas sensitive material to be free from electrical stress, thus increasing reliability. The device shows excellent gas sensitivity to the tested analytes relative to conventional metal oxide transistors and resistive sensors.

11.
Sci Rep ; 5: 11646, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26152914

RESUMO

Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm(2) and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells.

12.
Nanotechnology ; 25(50): 505501, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25422407

RESUMO

Ion-sensitive field effect transistors have been advanced in recent years by utilizing silicon nanowires (Si-NWs), but establishing their optimized operation regime is an area of ongoing research. We propose a modified configuration of SiNWs in the form of a honeycomb structure to obtain high signal to noise ratio and high current stability. The low-frequency noise characteristics and the electrical stress are systematically considered for the optimization and compared against conventional SiNW devices. The operation voltage of the device severely affects the sensing stability; as the gate voltage is increased, the signal-to-noise ratio is enhanced, however, the stress effect becomes severe, and vice versa. The honeycomb nanowire structure shows enhanced noise characteristics in low voltage operation, proving to be an optimum solution for achieving highly stable sensor operation.

13.
Small ; 10(18): 3795-802, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24828147

RESUMO

The photoresponse characteristics of In2Se3 nanowire photodetectors with the κ-phase and α-phase structures are investigated. The as-grown κ-phase In2Se3 nanowires by the vapor-liquid-solid technique are phase-transformed to the α-phase nanowires by thermal annealing. The photoresponse performances of the κ-phase and α-phase In2Se3 nanowire photodetectors are characterized over a wide range of wavelengths (300-900 nm). The phase of the nanowires is analyzed using a high-resolution transmission microscopy equipped with energy dispersive X-ray spectroscopy and X-ray diffraction. The electrical conductivity and photoresponse characteristics are significantly enhanced in the α-phase due to smaller bandgap structure compared to the κ-phase nanowires. The spectral responsivities of the α-phase devices are 200 times larger than those of the κ-phase devices. The superior performance of the thermally phase-transformed In2Se3 nanowire devices offers an avenue to develop highly sensitive photodetector applications.

14.
J Nanosci Nanotechnol ; 14(1): 273-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24730263

RESUMO

The interest in biologically sensitive field effect transistors (BioFETs) is growing explosively due to their potential as biosensors in biomedical, environmental monitoring and security applications. Recently, adoption of silicon nanowires in BioFETs has enabled enhancement of sensitivity, device miniaturization, decreasing power consumption and emerging applications such as the 3D cell probe. In this review, we describe the device physics and operation of the silicon nanowire BioFETs along with recent advances in the field. The silicon nanowire BioFETs are basically the same as the conventional field-effect transistors (FETs) with the exceptions of nanowire channel instead of thin film and a liquid gate instead of the conventional gate. Therefore, the silicon device physics is important to understand the operation of the BioFETs. Herein, physical characteristics of the silicon nanowire FETs are described and the operational principles of the BioFETs are classified according to the number of gates and the analysis domain of the measured signal. Even the bottom-up process has merits on low-cost fabrication; the top-down process technique is highlighted here due to its reliability and reproducibility. Finally, recent advances in the silicon nanowire BioFETs in the literature are described and key features for commercialization are discussed.


Assuntos
Técnicas Biossensoriais/instrumentação , Condutometria/instrumentação , Imunoensaio/instrumentação , Análise em Microsséries/instrumentação , Nanofios/química , Nanofios/ultraestrutura , Silício/química , Técnicas Biossensoriais/métodos , Condutometria/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Imunoensaio/métodos , Análise em Microsséries/métodos , Nanotecnologia/instrumentação
15.
Analyst ; 136(23): 5012-6, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22068238

RESUMO

We have fabricated Si nanowire (SiNW) based ion-sensitive field effect transistors (ISFETs) for biosensing applications. The ability to prepare a large number of sensors on a wafer, the use of standard silicon microfabrication techniques resulting in cost savings, and potential high sensitivity are significant advantages in favor of nanoscale SiNW ISFETs. The SiNW ISFETs with embedded Ag/AgCl reference electrode were fabricated on a standard silicon-on-insulator wafer using electron-beam lithography and conventional semiconductor processing technology. The current-voltage characteristics show an n-type FET behavior with a relatively high on/off current ratio, reasonable sub-threshold swing value, and low gate-leakage current. The pH responses of the ISFETs with different pH solutions were characterized at room temperature which showed a clear lateral shift of the drain current vs. gate voltage curve with a change in the pH value of the solution and a sensitivity of 40 mV pH(-1). The low frequency noise characteristics were investigated to evaluate the signal to noise ratio and sensing limit of the devices.


Assuntos
Técnicas Biossensoriais , Nanofios/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Eletrodos , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Microtecnologia , Silício , Compostos de Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...