Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncologist ; 29(4): 289-302, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38048782

RESUMO

Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor. Standard therapies, including surgical resection, chemoradiation, and tumor treating fields, have not resulted in major improvements in the survival outcomes of patients with GBM. The lack of effective strategies has led to an increasing interest in immunotherapic approaches, considering the success in other solid tumors. However, GBM is a highly immunosuppressive tumor, as documented by the presence of several mechanisms of immune escape, which may represent a reason why immunotherapy clinical trials failed in this kind of tumor. In this review, we examine the current landscape of immunotherapy strategies in GBM, focusing on the challenge of immunoresistance and potential mechanisms to overcome it. We discussed completed and ongoing clinical trials involving immune checkpoint inhibitors, oncolytic viruses, vaccines, and CAR T-cell therapies, to provide insights into the efficacy and outcomes of different immunotherapeutic interventions. We also explore the impact of radiotherapy on the immune system within the GBM microenvironment highlighting the complex interactions between radiation treatment and the immune response.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Imunoterapia/métodos , Imunoterapia Adotiva , Microambiente Tumoral
2.
J Cell Sci ; 133(20)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32973110

RESUMO

Most tissues harbor a substantial population of resident macrophages. Here, we elucidate a functional link between the Slc7a7 cationic amino acid transporter and tissue macrophages. We identified a mutant zebrafish devoid of microglia due to a mutation in the slc7a7 gene. We found that in Slc7a7-deficient larvae, macrophages do enter the retina and brain to become microglia, but then die during the developmental wave of neuronal apoptosis, which triggers intense efferocytic work from them. A similar macrophage demise occurs in other tissues, at stages where macrophages have to engulf many cell corpses, whether due to developmental or experimentally triggered cell death. We found that Slc7a7 is the main cationic amino acid transporter expressed in macrophages of zebrafish larvae, and that its expression is induced in tissue macrophages within 1-2 h upon efferocytosis. Our data indicate that Slc7a7 is vital not only for microglia but also for any steadily efferocytic tissue macrophages, and that slc7a7 gene induction is one of the adaptive responses that allow them to cope with the catabolism of numerous dead cells without compromising their own viability.


Assuntos
Aminoácidos , Peixe-Zebra , Animais , Macrófagos , Microglia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
3.
PLoS Biol ; 16(4): e2004162, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29708962

RESUMO

The vertebrate neuroepithelium is composed of elongated progenitors whose reciprocal attachments ensure the continuity of the ventricular wall. As progenitors commit to differentiation, they translocate their nucleus basally and eventually withdraw their apical endfoot from the ventricular surface. However, the mechanisms allowing this delamination process to take place while preserving the integrity of the neuroepithelial tissue are still unclear. Here, we show that Notch signaling, which is classically associated with an undifferentiated state, remains active in prospective neurons until they delaminate. During this transition period, prospective neurons rapidly reduce their apical surface and only later down-regulate N-Cadherin levels. Upon Notch blockade, nascent neurons disassemble their junctions but fail to reduce their apical surface. This disrupted sequence weakens the junctional network and eventually leads to breaches in the ventricular wall. We also provide evidence that the Notch ligand Delta-like 1 (Dll1) promotes differentiation by reducing Notch signaling through a Cis-inhibition mechanism. However, during the delamination process, the ubiquitin ligase Mindbomb1 (Mib1) transiently blocks this Cis-inhibition and sustains Notch activity to defer differentiation. We propose that the fine-tuned balance between Notch Trans-activation and Cis-inhibition allows neuroepithelial cells to seamlessly delaminate from the ventricular wall as they commit to differentiation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Células Neuroepiteliais/metabolismo , Neurogênese/genética , Receptores Notch/genética , Ubiquitina-Proteína Ligases/genética , Animais , Animais Geneticamente Modificados , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular , Embrião de Galinha , Galinhas , Feminino , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Células Neuroepiteliais/citologia , Neurônios/citologia , Neurônios/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Transfecção , Ubiquitina-Proteína Ligases/metabolismo
4.
Neuron ; 93(3): 542-551.e4, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28132826

RESUMO

Unequal centrosome maturation correlates with asymmetric division in multiple cell types. Nevertheless, centrosomal fate determinants have yet to be identified. Here, we show that the Notch pathway regulator Mindbomb1 co-localizes asymmetrically with centriolar satellite proteins PCM1 and AZI1 at the daughter centriole in interphase. Remarkably, while PCM1 and AZI1 remain asymmetric during mitosis, Mindbomb1 is associated with either one or both spindle poles. Asymmetric Mindbomb1 correlates with neurogenic divisions and Mindbomb1 is inherited by the prospective neuron. By contrast, in proliferative divisions, a supplementary pool of Mindbomb1 associated with the Golgi apparatus in interphase is released during mitosis and compensates for Mindbomb1 centrosomal asymmetry. Finally, we show that preventing Mindbomb1 centrosomal association induces reciprocal Notch activation between sister cells and promotes symmetric divisions. Thus, we uncover a link between differential centrosome maturation and Notch signaling and reveal an unexpected compensatory mechanism involving the Golgi apparatus in restoring symmetry in proliferative divisions.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Mitose , Células-Tronco Neurais/metabolismo , Neurogênese , Ubiquitina-Proteína Ligases/metabolismo , Animais , Divisão Celular , Centrossomo/metabolismo , Embrião de Galinha , Complexo de Golgi/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...