Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1762, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720985

RESUMO

The observed sex disparity in bladder cancer (BlCa) argues that androgen receptor (AR) signaling has a role in these malignancies. BlCas express full-length AR (FL-AR), constitutively active AR splice variants, including AR-v19, or both, and their depletion limits BlCa viability. However, the mechanistic basis of AR-dependence is unknown. Here, we depleted FL-AR, AR-v19, or all AR forms (T-AR), and performed RNA-seq studies to uncover that different AR forms govern distinct but partially overlapping transcriptional programs. Overlapping alterations include a decrease in mTOR and an increase of hypoxia regulated transcripts accompanied by a decline in oxygen consumption rate (OCR). Queries of BlCa databases revealed a significant negative correlation between AR expression and multiple hypoxia-associated transcripts arguing that this regulatory mechanism is a feature of high-grade malignancies. Our analysis of a 1600-compound library identified niclosamide as a strong ATPase inhibitor that reduces OCR in BlCa cells, decreased cell viability and induced apoptosis in a dose and time dependent manner. These results suggest that BlCa cells hijack AR signaling to enhance metabolic activity, promoting cell proliferation and survival; hence targeting this AR downstream vulnerability presents an attractive strategy to limit BlCa.


Assuntos
Receptores Androgênicos , Neoplasias da Bexiga Urinária , Humanos , Receptores Androgênicos/genética , Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Células Epiteliais , Hipóxia
2.
Cancer Lett ; 504: 49-57, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33549708

RESUMO

Bladder cancer (BlCa) exhibits a gender disparity where men are three times more likely to develop the malignancy than women suggesting a role for the androgen receptor (AR). Here we report that BlCa cells express low molecular weight (LMW) AR isoforms that are missing the ligand binding domain (LBD). Isoform expression was detected in most BlCa cells, while a few express the full-length AR. Immunofluorescence studies detect AR in the nucleus and cytoplasm, and localization is cell dependent. Cells with nuclear AR expression exhibit reduced viability and increased apoptosis on total AR depletion. A novel AR-LMW variant, AR-v19, that is missing the LBD and contains 15 additional amino acids encoded by intron 3 sequences was detected in most BlCa malignancies. AR-v19 localizes to the nucleus and can transactivate AR-dependent transcription in a dose dependent manner. AR-v19 depletion impairs cell viability and promotes apoptosis in cells that express this variant. Thus, AR splice variant expression is common in BlCa and instrumental in ensuring cell survival. This suggests that targeting AR or AR downstream effectors may be a therapeutic strategy for the treatment of this malignancy.


Assuntos
Apoptose , Receptores Androgênicos/genética , Neoplasias da Bexiga Urinária/patologia , Sobrevivência Celular , Feminino , Humanos , Masculino , Peso Molecular , Receptores Androgênicos/metabolismo , Neoplasias da Bexiga Urinária/metabolismo
3.
Cancer Lett ; 483: 12-21, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32330514

RESUMO

Prostate cancer (PCa) is characterized by a unique dependence on optimal androgen receptor (AR) activity where physiological androgen concentrations induce proliferation but castrate and supraphysiological levels suppress growth. This feature has been exploited in bipolar androgen therapy (BAT) for castrate resistant malignancies. Here, we investigated the role of the tumor suppressor protein p14ARF in maintaining optimal AR activity and the function of the AR itself in regulating p14ARF levels. We used a tumor tissue array of differing stages and grades to define the relationships between these components and identified a strong positive correlation between p14ARF and AR expression. Mechanistic studies utilizing CWR22 xenograft and cell culture models revealed that a decrease in AR reduced p14ARF expression and deregulated E2F factors, which are linked to p14ARF and AR regulation. Chromatin immunoprecipitation studies identified AR binding sites upstream of p14ARF. p14ARF depletion enhanced AR-dependent PSA and TMPRSS2 transcription, hence p14ARF constrains AR activity. However, p14ARF depletion ultimately results in apoptosis. In PCa cells, AR co-ops p14ARF as part of a feedback mechanism to ensure optimal AR activity for maximal prostate cancer cell survival and proliferation.


Assuntos
Apoptose , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Calicreínas/genética , Calicreínas/metabolismo , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p14ARF/genética
4.
Oncotarget ; 9(77): 34567-34581, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30349650

RESUMO

Treatment options for high grade urothelial cancers are limited and have remained largely unchanged for several decades. Selinexor (KPT-330), a first in class small molecule that inhibits the nuclear export protein XPO1, has shown efficacy as a single agent treatment for numerous different malignancies, but its efficacy in limiting bladder malignancies has not been tested. In this study we assessed selinexor-dependent cytotoxicity in several bladder tumor cells and report that selinexor effectively reduced XPO1 expression and limited cell viability in a dose dependent manner. The decrease in cell viability was due to an induction of apoptosis and cell cycle arrest. These results were recapitulated in in vivo studies where selinexor decreased tumor growth. Tumors treated with selinexor expressed lower levels of XPO1, cyclin A, cyclin B, and CDK2 and increased levels of RB and CDK inhibitor p27, a result that is consistent with growth arrest. Cells expressing wildtype RB, a potent tumor suppressor that promotes growth arrest and apoptosis, were most susceptible to selinexor. Cell fractionation and immunofluorescence studies showed that selinexor treatment increased nuclear RB levels and mechanistic studies revealed that RB ablation curtailed the response to the drug. Conversely, limiting CDK4/6 dependent RB phosphorylation by palbociclib was additive with selinexor in reducing bladder tumor cell viability, confirming that RB activity has a role in the response to XPO1 inhibition. These results provide a rationale for XPO1 inhibition as a novel strategy for the treatment of bladder malignancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...