Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Pathogens ; 13(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535556

RESUMO

The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis (VL), a potentially fatal disease if left untreated. Given the limitations of current therapies, there is an urgent need for new, safe, and effective drugs. To discover novel antileishmanial compounds from previously unexplored chemical spaces, we conducted a high-throughput screening (HTS) of 2562 natural compounds, assessing their activity against L. donovani promastigotes and intracellular amastigotes. Utilizing the criteria of ≥70% parasite growth inhibition and ≥70% host cell (THP-1) viability, we selected 100 inhibitors for half-maximal inhibitory concentration (IC50) value determination. Twenty-six compounds showed activities in both forms of Leishmania with a selectivity index of over 3. Clustering analysis resulted in four chemical clusters with scaffolds of lycorine (cluster 1), 5-hydroxy-9,10-dihydro-4H,8H-pyrano[2,3-f]chromene-4,8-dione (cluster 2), and semi-synthetic derivatives of ansamycin macrolide (cluster 4). The enantiomer of lycorine, BMD-NP-00820, showed the highest anti-amastigote activity with an IC50 value of 1.74 ± 0.27 µM and a selectivity index (SI) > 29. In cluster 3, the most potent compound had an IC50 value of 2.20 ± 0.29 µM with an SI > 23, whereas in cluster 4, with compounds structurally similar to the tuberculosis drug rifapentine, BMD-NP-02085 had an IC50 value of 1.76 ± 0.28 µM, but the SI value was 7.5. Taken together, the natural products identified from this study are a potential source for the discovery of antileishmanial chemotypes for further development.

2.
Acta Neuropathol Commun ; 12(1): 5, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172953

RESUMO

BACKGROUND: Parthanatos represents a critical molecular aspect of Parkinson's disease, wherein AIMP2 aberrantly activates PARP-1 through direct physical interaction. Although AIMP2 ought to be a therapeutic target for the disease, regrettably, it is deemed undruggable due to its non-enzymatic nature and predominant localization within the tRNA synthetase multi-complex. Instead, AIMP2 possesses an antagonistic splice variant, designated DX2, which counteracts AIMP2-induced apoptosis in the p53 or inflammatory pathway. Consequently, we examined whether DX2 competes with AIMP2 for PARP-1 activation and is therapeutically effective in Parkinson's disease. METHODS: The binding affinity of AIMP2 and DX2 to PARP-1 was contrasted through immunoprecipitation. The efficacy of DX2 in neuronal cell death was assessed under 6-OHDA and H2O2 in vitro conditions. Additionally, endosomal and exosomal activity of synaptic vesicles was gauged in AIMP2 or DX2 overexpressed hippocampal primary neurons utilizing optical live imaging with VAMP-vGlut1 probes. To ascertain the role of DX2 in vivo, rotenone-induced behavioral alterations were compared between wild-type and DX2 transgenic animals. A DX2-encoding self-complementary adeno-associated virus (scAAV) was intracranially injected into 6-OHDA induced in vivo animal models, and their mobility was examined. Subsequently, the isolated brain tissues were analyzed. RESULTS: DX2 translocates into the nucleus upon ROS stress more rapidly than AIMP2. The binding affinity of DX2 to PARP-1 appeared to be more robust compared to that of AIMP2, resulting in the inhibition of PARP-1 induced neuronal cell death. DX2 transgenic animals exhibited neuroprotective behavior in rotenone-induced neuronal damage conditions. Following a single intracranial injection of AAV-DX2, both behavior and mobility were consistently ameliorated in neurodegenerative animal models induced by 6-OHDA. CONCLUSION: AIMP2 and DX2 are proposed to engage in bidirectional regulation of parthanatos. They physically interact with PARP-1. Notably, DX2's cell survival properties manifest exclusively in the context of abnormal AIMP2 accumulation, devoid of any tumorigenic effects. This suggests that DX2 could represent a distinctive therapeutic target for addressing Parkinson's disease in patients.


Assuntos
Doença de Parkinson , Parthanatos , Animais , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas Nucleares/metabolismo , Peróxido de Hidrogênio , Oxidopamina , Doença de Parkinson/genética , Doença de Parkinson/terapia , Rotenona , Linhagem Celular Tumoral
3.
J Transl Med ; 22(1): 53, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218903

RESUMO

BACKGROUND: Neurodegenerative diseases, including Parkinson's disease, Amyotropic Lateral Sclerosis (ALS) and Alzheimer's disease, present significant challenges for therapeutic development due to drug delivery restrictions and toxicity concerns. Prevailing strategies often employ adeno-associated viral (AAV) vectors to deliver neuroprotective survival genes directly into the central nervous system (CNS). However, these methods have been limited by triggering immunogenic responses and risk of tumorigenicity, resulting from overexpression of survival genes in peripheral blood mononuclear cells (PBMC), thereby increasing the risk of tumorigenicity in specific immune cells. Thus, by coding selectively suppressive microRNA (miRNA) target sequences in AAV genome, we designed CNS-targeted neuroprotective gene expression vector system without leakage to blood cells. METHODS: To minimize the potential for transgene contamination in the blood, we designed a CNS-specific AAV system. Our system utilized a self-complementary AAV (scAAV), encoding a quadruple repeated target sequence of the hematopoietic cell-specific miR142-3p at the 3' untranslated region (UTR). As a representative therapeutic survival gene for Parkinson's disease treatment, we integrated DX2, an antagonistic splice variant of the apoptotic gene AIMP2, known to be implicated in Parkinson's disease, into the vector. RESULTS: This configuration ensured that transgene expression was stringently localized to the CNS, even if the vector found its way into the blood cells. A single injection of scAAV-DX2 demonstrated marked improvement in behavior and motor activity in animal models of Parkinson's disease induced by either Rotenone or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Importantly, comprehensive preclinical data adhering to Good Laboratory Practice (GLP) standards revealed no adverse effects in the treated animals. CONCLUSIONS: Our CNS-specific vector system, which encodes a survival transgene DX2, signifies a promising avenue for safe gene therapy, avoiding unintended expression of survival gene in blood cells, applicable to various neurodegenerative diseases.


Assuntos
Doença de Parkinson , Animais , Doença de Parkinson/genética , Doença de Parkinson/terapia , Leucócitos Mononucleares , Encéfalo/metabolismo , Terapia Genética/métodos , Transgenes , Vetores Genéticos , Dependovirus/genética
4.
Bioorg Chem ; 141: 106890, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37783099

RESUMO

Conformational restriction was addressed towards the development of more selective and effective antileishmanial agents than currently used drugs for treatment of Leishmania donovani; the causative parasite of the fatal visceral leishmaniasis. Five types of cyclopentane-based conformationally restricted miltefosine analogs that were previously explored in literature as anticancer AKT-inhibitors were reprepared and repurposed as antileishmanial agents. Amongst, positions-1 and 2 cis-conformationally-restricted compound 1a and positions-2 and 3 trans-conformationally-restricted compound 3b were highly potent eliciting sub-micromolar IC50 values for inhibition of infection and inhibition of parasite number compared with the currently used miltefosine drug that showed low micromolar IC50 values for inhibition of infection and inhibition of parasite number. Compounds 1a and 3b eradicated the parasite without triggering host cells cytotoxicity over more than one log concentration interval which is a superior performance compared to miltefosine. In silico studies suggested that conformational restriction conserved the conformer capable of binding LdAKT-like kinase while it might be possible that it excludes other conformers mediating undesirable effects and/or toxicity of miltefosine. Together, this study presents compounds 1a and 3b as antileishmanial agents with superior performance over the currently used miltefosine drug.


Assuntos
Antiprotozoários , Leishmania donovani , Proteínas Proto-Oncogênicas c-akt , Ciclopentanos/farmacologia , Reposicionamento de Medicamentos , Antiprotozoários/química
5.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446242

RESUMO

Angiotensin I-converting enzyme (ACE) is an important blood pressure regulator. In this study, we aimed to investigate the ACE-inhibitory effects of meroterpenoids isolated from the brown alga, Sargassum macrocarpum, and the molecular mechanisms underlying ACE inhibition. Four fractions of S. macrocarpum were prepared using hexane, chloroform, ethyl acetate, and water as solvents and analyzed for their potential ACE-inhibitory effects. The chloroform fraction showed the strongest ACE-inhibitory effect, with an IC50 value of 0.18 mg/mL. Three meroterpenoids, sargachromenol, 7-methyl sargachromenol, and sargaquinoic acid, were isolated from the chloroform fraction. Meroterpenoids isolated from S. macrocarpum had IC50 values of 0.44, 0.37, and 0.14 mM. The molecular docking study revealed that the ACE-inhibitory effect of the isolated meroterpenoids was mainly attributed to Zn-ion, hydrogen bonds, pi-anion, and pi-alkyl interactions between the meroterpenoids and ACE. These results suggest that S. macrocarpum could be a potential raw material for manufacturing antihypertensive nutraceutical ingredients.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Sargassum , Inibidores da Enzima Conversora de Angiotensina/química , Simulação de Acoplamento Molecular , Sargassum/química , Peptidil Dipeptidase A/química , Clorofórmio
6.
Front Endocrinol (Lausanne) ; 14: 1141906, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455901

RESUMO

Introduction: Reductions in energy availability leading to weight loss can induce loss of bone and impact important endocrine regulators of bone integrity. We sought to elucidate whether endurance exercise (EX) can mitigate bone loss observed in sedentary (SED) skeletally mature rodents subjected to graded energy deficits. Methods: Female virgin rats (n=84, 5-mo-old; 12/group) were randomized to baseline controls and either sedentary (SED) or exercise (EX) conditions, and within each exercise status to adlib-fed (ADLIB), or moderate (MOD) or severe (SEV) energy restriction diets for 12 weeks. Rats assigned to EX groups performed treadmill running to increase weekly energy expenditure by 10%. MOD-ER-SED, SEV-ER-SED, MOD-ER-EX and SEV-ER-EX were fed modified AIN93M diets with 20%, 40% 10%, and 30% less energy content, respectively, with 100% of all other nutrients provided. Results: Energy availability (EA) was effectively reduced by ~14% and ~30% in the MOD-ER and SEV-ER groups, respectively. MOD-ER for 12 weeks resulted in few negative impacts on bone and, except for serum leptin in MOD-ER-SED rats, no significant changes in endocrine factors. By contrast, SEV-ER in SED rats resulted in significantly lower total body and femoral neck bone mass, and reduced serum estradiol, IGF-1 and leptin. EX rats experiencing the same reduction in energy availability as SEV-ER-SED exhibited higher total body mass, lean mass, total BMC, and higher serum IGF-1 at the end of 12 weeks. Bone mechanical properties at 3 bone sites (mid-femur, distal femur, femoral neck) were minimally impacted by ER but positively affected by EX. Discussion: These findings indicate that combining increased EX energy expenditure with smaller reductions in energy intake to achieve a targeted reduction in EA provides some protection against loss of bone mass and lean mass in skeletally mature female rats, likely due to better preservation of circulating IGF-1, and that bone mechanical integrity is not significantly degraded with either moderate or severe reduced EA.


Assuntos
Leptina , Condicionamento Físico Animal , Animais , Feminino , Ratos , Osso e Ossos , Fator de Crescimento Insulin-Like I , Condicionamento Físico Animal/fisiologia
7.
ACS Infect Dis ; 9(2): 342-364, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36706233

RESUMO

SQ109 is a tuberculosis drug candidate that has high potency against Mycobacterium tuberculosis and is thought to function at least in part by blocking cell wall biosynthesis by inhibiting the MmpL3 transporter. It also has activity against bacteria and protozoan parasites that lack MmpL3, where it can act as an uncoupler, targeting lipid membranes and Ca2+ homeostasis. Here, we synthesized 18 analogs of SQ109 and tested them against M. smegmatis, M. tuberculosis, M. abscessus, Bacillus subtilis, and Escherichia coli, as well as against the protozoan parasites Trypanosoma brucei, T. cruzi, Leishmania donovani, L. mexicana, and Plasmodium falciparum. Activity against the mycobacteria was generally less than with SQ109 and was reduced by increasing the size of the alkyl adduct, but two analogs were ∼4-8-fold more active than SQ109 against M. abscessus, including a highly drug-resistant strain harboring an A309P mutation in MmpL3. There was also better activity than found with SQ109 with other bacteria and protozoa. Of particular interest, we found that the adamantyl C-2 ethyl, butyl, phenyl, and benzyl analogs had 4-10× increased activity against P. falciparum asexual blood stages, together with low toxicity to a human HepG2 cell line, making them of interest as new antimalarial drug leads. We also used surface plasmon resonance to investigate the binding of inhibitors to MmpL3 and differential scanning calorimetry to investigate binding to lipid membranes. There was no correlation between MmpL3 binding and M. tuberculosis or M. smegmatis cell activity, suggesting that MmpL3 is not a major target in mycobacteria. However, some of the more active species decreased lipid phase transition temperatures, indicating increased accumulation in membranes, which is expected to lead to enhanced uncoupler activity.


Assuntos
Malária , Mycobacterium abscessus , Mycobacterium tuberculosis , Parasitos , Tuberculose , Animais , Humanos , Antituberculosos/farmacologia , Parasitos/metabolismo , Proteínas de Bactérias/metabolismo , Tuberculose/microbiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Lipídeos
8.
Mol Neurobiol ; 60(1): 145-159, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36242734

RESUMO

Although a couple of studies have reported that mutant superoxide dismutase 1 (SOD1), one of the causative genes of familial amyotrophic lateral, interacts physically with lysyl-tRNA synthetase (KARS1) by a gain of function, there is limited evidence regarding the detailed mechanism about how the interaction leads to neuronal cell death. Our results indicated that the aminoacyl-tRNA synthetase-interacting multi-functional protein 2 (AIMP2) mediated cell death upon the interplay between mutant SOD1 and KARS1 in ALS. Binding of mutant SOD1 with KARS1 led to the release of AIMP2 from its original binding partner KARS1, and the free form of AIMP2 induced TRAF2 degradation followed by TNF-α-induced cell death. We also suggest a therapeutic application that overexpression of DX2, the exon 2-deleted antagonistic splicing variant of AIMP2 (AIMP2-DX2), reduced neuronal cell death in the ALS mouse model. Expression of DX2 suppressed TRAF2 degradation and TNF-α-induced cell death by competing mode of action against full-length AIMP2. Motor neuron differentiated form iPSC showed a resistance in neuronal cell death after DX2 administration. Further, intrathecal administration of DX2-coding adeno-associated virus (AAV) improved locomotive activity and survival in a mutant SOD1-induced ALS mouse model. Taken together, these results indicated that DX2 could prolong life span and delay the ALS symptoms through compensation in neuronal inflammation.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas Nucleares , Animais , Camundongos , Morte Celular , Linhagem Celular Tumoral , Mutação , Proteínas Nucleares/metabolismo , Superóxido Dismutase-1/metabolismo , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Isoformas de Proteínas
9.
Food Chem ; 407: 135130, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527945

RESUMO

In this study, seahorse peptide (SHP) was isolated from an alcalase-treated hydrolysate from Hippocampus abdominalis and assessed for its antioxidant potential against AAPH-induced oxidative stress damage. AAPH stimulation significantly decreased cell viability and increased intracellular reactive oxygen species (ROS) production in Vero cells. SHP treatment increased cell viability and remarkably lowered ROS production under AAPH-induced oxidative stress. Furthermore, it protected against AAPH-induced apoptotic DNA damage. Western blot analysis demonstrated that SHP treatment remarkably increased the protein expression levels of catalase and SOD in AAPH-induced Vero cells. A zebrafish study revealed that SHP-treated zebrafish embryos resulted in lower cell death, ROS generation, and lipid peroxidation than the AAPH-treated group. These results suggest that SHP is a potent functional antioxidant that could be developed as a natural antioxidant in the food and functional food industries.


Assuntos
Antioxidantes , Smegmamorpha , Animais , Chlorocebus aethiops , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Células Vero , Smegmamorpha/genética , Smegmamorpha/metabolismo , Estresse Oxidativo , Peptídeos/farmacologia , Peptídeos/metabolismo
10.
Mar Drugs ; 20(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35892939

RESUMO

Ecklonia maxima is a brown seaweed, which is abundantly distributed in South Africa. This study investigated an efficient approach using high-performance centrifugal partition chromatography (HPCPC), which has been successfully developed for the isolation and purification of phlorotannins, eckmaxol, and dieckol from the ethyl acetate fraction of E. maxima (EEM). We evaluated EEM for its inhibitory effect against lipopolysaccharide (LPS)-induced inflammatory responses in zebrafish embryos. The separation of eckmaxol and dieckol from samples of EEM using HPCPC was found to be of high purity and yield under an optimal solvent system composed of n-hexane:ethyl acetate:methanol:water (2:7:3:7, v/v/v/v). To evaluate the anti-inflammatory efficacy of EEM containing active compounds, zebrafish embryos exposed to LPS were compared with and without EEM treatment for nitric oxide (NO) production, reactive oxygen species (ROS) generation, and cell death two days after fertilization. These evaluations indicate that EEM alleviated inflammation by inhibiting cell death, ROS, and NO generation induced by LPS treatment. According to these results, eckmaxol and dieckol isolated from brown seaweed E. maxima could be considered effective anti-inflammatory agents as pharmaceutical and functional food ingredients.


Assuntos
Phaeophyceae , Alga Marinha , Animais , Anti-Inflamatórios/farmacologia , Cromatografia Líquida , Lipopolissacarídeos/farmacologia , Óxido Nítrico/metabolismo , Phaeophyceae/química , Espécies Reativas de Oxigênio/metabolismo , Alga Marinha/metabolismo , África do Sul , Peixe-Zebra/metabolismo
11.
Mar Drugs ; 20(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35736156

RESUMO

The aim of this study was to assess the potential hypertensive effects of the IGTGIPGIW peptide purified from Hippocampus abdominalis alcalase hydrolysate (HA) for application in the functional food industry. We investigated the antihypertensive effects of IGTGIPGIW in vitro by assessing nitric oxide production in EA.hy926 endothelial cells, which is a major factor affecting vasorelaxation. The potential vasorelaxation effect was evaluated using 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, a fluorescent stain. IGTGIPGIW significantly increased the expression of endothelial-derived relaxing factors, including endothelial nitric oxide synthase and protein kinase B, in EA.hy926 cells. Furthermore, oral administration of IGTGIPGIW significantly lowered the systolic blood pressure (183.60 ± 1.34 mmHg) and rapidly recovered the diastolic blood pressure (143.50 ± 5.55 mmHg) in the spontaneously hypertensive rat model in vivo. Our results demonstrate the antihypertensive activity of the IGTGIPGIW peptide purified from H. abdominalis and indicate its suitability for application in the functional food industry.


Assuntos
Anti-Hipertensivos , Óxido Nítrico Sintase Tipo III , Smegmamorpha , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea , Células Endoteliais , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos SHR
12.
J Endocr Soc ; 6(8): bvac084, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35702666

RESUMO

Undercarboxylated osteocalcin (ucOCN) has been considered to be an important endocrine factor, especially to regulate bone and energy metabolism. Even with the mounting evidence showing the consistent inverse correlation of ucOCN levels in chronic inflammatory diseases, however, the mechanism underlying the involvement of ucOCN in the muscular inflammation has not been fully understood. In the present study, we explored 1) the endocrine role of ucOCN in the regulation of inflammation in C2C12 myoblasts and primary myoblasts and the underlying intracellular signaling mechanisms, and 2) whether G protein-coupled receptor family C group 6 member A (GPRC6A) is the ucOCN-sensing receptor associated with the ucOCN-mediated anti-inflammatory signaling pathway in myoblasts. ucOCN suppressed the tumor necrosis factor-α (TNF-α)-induced expressions of major inflammatory cytokines, including interleukin-1ß (IL-1ß) and inhibited the TNF-α-stimulated activities of transcription factors, including NF-κB, in C2C12 and primary myoblasts. Both knockdown and knockout of GPRC6A, by using siRNA or a CRISPR/CAS9 system, respectively, did not reverse the effect of ucOCN on IL-1ß expression in myoblasts. Interestingly, TNF-α-induced IL-1ß expression was inhibited by knockdown or deletion of GPRC6A itself, regardless of the ucOCN treatment. ucOCN was rapidly internalized into the cytoplasmic region via caveolae-mediated endocytosis, suggesting the presence of new target proteins in the cell membrane and/or in the cytoplasm for interaction with ucOCN in myoblasts. Taken together, these findings indicate that ucOCN suppresses the TNF-α-induced inflammatory signaling pathway in myoblasts. GPRC6A is not a sensing receptor associated with the ucOCN-mediated anti-inflammatory signaling pathway in myoblasts.

13.
Biomedicines ; 10(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35327472

RESUMO

SQ109 is an anti-tubercular drug candidate that has completed Phase IIb/III clinical trials for tuberculosis and has also been shown to exhibit potent in vitro efficacy against protozoan parasites including Leishmania and Trypanosoma cruzi spp. However, its in vivo efficacy against protozoa has not been reported. Here, we evaluated the activity of SQ109 in mouse models of Leishmania, Trypanosoma spp. as well as Toxoplasma infection. In the T. cruzi mouse model, 80% of SQ109-treated mice survived at 40 days post-infection. Even though SQ109 did not cure all mice, these results are of interest since they provide a basis for future testing of combination therapies with the azole posaconazole, which acts synergistically with SQ109 in vitro. We also found that SQ109 inhibited the growth of Toxoplasma gondii in vitro with an IC50 of 1.82 µM and there was an 80% survival in mice treated with SQ109, whereas all untreated animals died 10 days post-infection. Results with Trypanosoma brucei and Leishmania donovani infected mice were not promising with only moderate efficacy. Since SQ109 is known to be extensively metabolized in animals, we investigated the activity in vitro of SQ109 metabolites. Among 16 metabolites, six mono-oxygenated forms were found active across the tested protozoan parasites, and there was a ~6× average decrease in activity of the metabolites as compared to SQ109 which is smaller than the ~25× found with mycobacteria.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35044903

RESUMO

A strictly aerobic, Gram-stain-negative, gliding, rod-shaped bacteria, designated strain S481T, was isolated from a surface seawater sample collected at Gunsan marina, in the West Sea of the Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain S481T formed a monophyletic clade with members of the genus Fulvivirga, showing 93.7-95.8% sequence similarity to the type strains. Strain S481T has a single circular chromosome of 4.13 Mbp with a DNA G+C content of 37.3 mol%. The values of average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization between strain S481T and all genome-sequenced species of the genus Fulvivirga were below 71.2%, 68.6% and 18.9%, respectively, indicating lower values than the standard cut-offs for species delineation. Growth was observed at 20-42 °C (optimum, 37 °C), at pH 6-8 (optimum, pH 7) and with 0 - 6 % NaCl (optimum, 1-2 %). The major fatty acids (>10%) were iso-C15:0, iso-C15:1 G and C16:1ω5c. The respiratory quinone was MK-7. The major polar lipids were identified as phosphatidylethanolamine, three unidentified aminolipids and five unidentified lipids. Based on the results of phenotypic characterization, phylogenetic analysis and genome-based comparison, strain S481T represents a novel species in the genus Fulvivirga, for which we propose the name Fulvivirga lutea sp. nov. The type strain is S481T (=KCTC 82209T=JCM 34505T).


Assuntos
Bacteroidetes/classificação , Filogenia , Água do Mar , Técnicas de Tipagem Bacteriana , Bacteroidetes/isolamento & purificação , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , República da Coreia , Água do Mar/microbiologia , Análise de Sequência de DNA , Vitamina K 2/química
15.
Int J Biol Macromol ; 190: 607-617, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508721

RESUMO

Bone morphogenic protein-2/4 (BMP-2/4) is an osteoinductive protein that accelerates osteogenesis when administered to bony defects. Sericin is produced by silkworms, and has a biological activity that differs depending on the degumming method used. Our results indicated that the high molecular weight fraction of silk sericin (MW > 30 kDa) obtained via sonication had a more abundant ß-sheet structure than the low molecular weight fraction. Administration of the ß-sheet structure silk sericin increased BMP-2/4 expression in a dose-dependent manner in RAW264.7 cells and human monocytes. This sericin increased the expression levels of toll-like receptor (TLR)-2, TLR-3, and TLR-4 in RAW264.7 cells. Application of a TLR-2 antibody or TLR pathway blocker decreased BMP-2/4 expression following sericin administration. In the animal model, the bone volume and BMP-2/4 expression were higher in rats treated with a sericin-incorporated gelatin sponge than in rats treated with a gelatin sponge alone or a sponge-incorporated with denatured sericin. In conclusion, sericin with a more abundant ß-sheet structure increased BMP-2/4 expression and bone formation better than sericin with a less abundant ß-sheet structure.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Sericinas/farmacologia , Transdução de Sinais , Seda/química , Receptores Toll-Like/metabolismo , Animais , Bombyx , Regeneração Óssea/efeitos dos fármacos , Gelatina/química , Camundongos , Peso Molecular , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Células RAW 264.7 , Ratos Sprague-Dawley , Sericinas/química , Sericinas/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Microtomografia por Raio-X
16.
Biochem Biophys Res Commun ; 569: 193-198, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34256188

RESUMO

Visceral leishmaniasis (VL) is a fatal infectious disease caused by viscerotropic parasitic species of Leishmania. Current treatment options are often ineffective and toxic, and more importantly, there are no clinically validated drug targets available to develop next generation therapeutics against VL. Topoisomerase IB (TopIB) is an essential enzyme for Leishmania survival. The enzyme is organized as a bi-subunit that is distinct from the monomeric topoisomerase I of human. Based on this unique feature, we synthesized peptides composed of partial amino acid sequences of small subunit of Leishmania donovani (Ld) TopIB to confirm a decrease in catalytic activity by interfering the interaction between the two subunits. One of the synthetic peptides, covering essential amino acids for catalytic activity of LdTopIB, interrupted the enzymatic activity. Next, we examined 151 compounds selected from virtual screening in a functional assay and identified three LRL-TP compounds with a significant decrease in LdTopIB activity (IC50 of LRL-TP-85: 1.3 µM; LRL-TP-94: 2.9 µM; and LRL-TP-101: 35.3 µM) and no effects on Homo sapiens (Hs) TopIB activity. Based on molecular docking, the protonated tertiary amine of inhibitors formed key interactions with S415 of the large subunit. The EC50 values of LRL-TP-85, LRL-TP-94, and LRL-TP-101 were respectively 4.9, 1.4, and 27.8 µM in extracellular promastigote assay and 34.0, 53.7, and 11.4 µM in intracellular amastigote assay. Overall, we validated the protein-protein interaction site of LdTopIB as a potential drug target and identified small molecule inhibitors with anti-leishmanial activity.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Leishmania donovani/enzimologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Inibidores da Topoisomerase I/farmacologia , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Células Cultivadas , DNA/química , DNA/genética , DNA/metabolismo , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/genética , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/prevenção & controle , Camundongos , Modelos Moleculares , Estrutura Molecular , Conformação de Ácido Nucleico , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Células THP-1 , Inibidores da Topoisomerase I/química
17.
Artigo em Inglês | MEDLINE | ID: mdl-33502305

RESUMO

A Gram-stain-negative, motile, facultatively anaerobic rod-shaped bacterium with a polar flagellum, designated strain S7T was isolated from seawater sample collected at Uljin marina, in the East Sea of the Republic of Korea. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain S7T was affiliated with members of genus Ferrimonas, showing the highest sequence similarities to the type strains Ferrimonas senticii P2S11T (95.7 %), Ferrimonas balearica PATT (95.7 %) and Ferrimonas pelagia CBA4601T (95.1 %). The genome was 4.13 Mbp with a DNA G+C content of 49.4 %. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between S7T and F. senticii P2S11T and F. balearica PATT yielded ANI values of 71.9 and 70.7 %, and dDDH values of 15.1 and 13.9 %, respectively. The genome of S7T was predicted to encode triacylglycerol lipase, phospholipase A1/A2 and lysophospholipase as well as esterase involved in lipolytic processes. Growth was observed at 8-31 °C (optimum 27 °C), at pH 7-9 (optimum pH 7), and with 1-6 % NaCl (optimum 2 %). The respiratory quinones were MK-7 and Q-7 and the major fatty acids (>10 %) were C16 : 0, C16 : 1ω9c, C17 : 1ω8c, and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The major polar lipids were identified as phosphatidylethanolamine, phosphatidylglycerol, two unidentified phospholipids, and three unidentified lipids. On the basis of the results of this polyphasic analysis, it was determined that the strain represents a novel species of the genus Ferrimonas, for which the name Ferrimonas lipolytica sp. nov. is proposed. The type strain is S7T (=KCTC 72490T=JCM 33793T).


Assuntos
Gammaproteobacteria/classificação , Filogenia , Água do Mar/microbiologia , Anaerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Gammaproteobacteria/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
18.
Toxins (Basel) ; 12(12)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353166

RESUMO

Dinoflagellates are an important group of phytoplanktons, characterized by two dissimilar flagella and distinctive features of both plants and animals. Dinoflagellate-generated harmful algal blooms (HABs) and associated damage frequently occur in coastal areas, which are concomitant with increasing eutrophication and climate change derived from anthropogenic waste and atmospheric carbon dioxide, respectively. The severe damage and harmful effects of dinoflagellate phycotoxins in the fishing industry have been recognized over the past few decades, and the management and monitoring of HABs have attracted much attention, leaving aside the industrial application of their valuable toxins. Specific modes of action of the organisms' toxins can effectively be utilized for producing beneficial materials, such as Botox and other therapeutic agents. This review aims to explore the potential industrial applications of marine dinoflagellate phycotoxins; furthermore, this review focuses on their modes of action and summarizes the available knowledge on them.


Assuntos
Mudança Climática , Dinoflagellida/isolamento & purificação , Monitoramento Ambiental/métodos , Pesqueiros , Proliferação Nociva de Algas , Animais , Monitoramento Ambiental/normas , Pesqueiros/normas , Humanos
19.
Pathogens ; 9(5)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443883

RESUMO

Protozoan parasites of the genus Leishmania are the causative agents of leishmaniasis, a spectrum of a disease that threatens public health worldwide. Although next-generation therapeutics are urgently needed, the early stage of the drug discovery process is hampered by very low hit rates from intracellular Leishmania phenotypic high-throughput screenings. Designing and applying a physiologically relevant in vitro assay is therefore in high demand. In this study, we characterized the infectivity, morphology, and drug susceptibility of different Leishmania and host cell infection combinations. Primary bone marrow-derived macrophage (BMDM) and differentiated human acute monocytic leukemia (THP-1) cells were infected with amastigote or promastigote forms of Leishmania amazonensis and Leishmania donovani. Regardless of host cell types, amastigotes were generally well phagocytosed and showed high infectivity, whereas promastigotes, especially those of L. donovani, had predominantly remained in the extracellular space. In the drug susceptibility test, miltefosine and sodium stibogluconate (SSG) showed varying ranges of activity with 14 and >10-fold differences in susceptibility, depending on the host-parasite pairs, indicating the importance of assay conditions for evaluating antileishmanial activity. Overall, our results suggest that combinations of Leishmania species, infection forms, and host cells must be carefully optimized to evaluate the activity of potential therapeutic compounds against Leishmania.

20.
Molecules ; 25(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340370

RESUMO

Kinetoplastid parasites, including Leishmania and Trypanosoma spp., are life threatening pathogens with a worldwide distribution. Next-generation therapeutics for treatment are needed as current treatments have limitations, such as toxicity and drug resistance. In this study, we examined the activities of established mammalian target of rapamycin (mTOR)/phosphoinositide 3-kinase (PI3K) inhibitors against these tropical diseases. High-throughput screening of a library of 1742 bioactive compounds against intracellular L. donovani was performed, and seven mTOR/PI3K inhibitors were identified. Dose-dilution assays revealed that these inhibitors had half maximal effective concentration (EC50) values ranging from 0.14 to 13.44 µM for L. donovani amastigotes and from 0.00005 to 8.16 µM for T. brucei. The results of a visceral leishmaniasis mouse model indicated that treatment with Torin2, dactolisib, or NVP-BGT226 resulted in reductions of 35%, 53%, and 54%, respectively, in the numbers of liver parasites. In an acute T. brucei mouse model using NVP-BGT226 parasite numbers were reduced to under the limits of detection by five consecutive days of treatment. Multiple sequence and structural alignment results indicated high similarities between mTOR and kinetoplastid TORs; the inhibitors are predicted to bind in a similar manner. Taken together, these results indicated that the TOR pathways of parasites have potential for the discovery of novel targets and new potent inhibitors.


Assuntos
Antiprotozoários/farmacologia , Leishmania donovani/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Antiprotozoários/química , Sítios de Ligação , Linhagem Celular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Inibidores de Fosfoinositídeo-3 Quinase/química , Ligação Proteica , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...