Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141402, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346509

RESUMO

Urban surface runoff contains chemicals that can negatively affect water quality. Urban runoff studies have determined the transport dynamics of many legacy pollutants. However, less attention has been paid to determining the first-flush effects (FFE) of emerging micropollutants using suspect and non-target screening (SNTS). Therefore, this study employed suspect and non-target analyses using liquid chromatography-high resolution mass spectrometry to detect emerging pollutants in urban receiving waters during stormwater events. Time-interval sampling was used to determine occurrence trends during stormwater events. Suspect screening tentatively identified 65 substances, then, their occurrence trend was grouped using correlation analysis. Non-target peaks were prioritized through hierarchical cluster analysis, focusing on the first flush-concentrated peaks. This approach revealed 38 substances using in silico identification. Simultaneously, substances identified through homologous series observation were evaluated for their observed trends in individual events using network analysis. The results of SNTS were normalized through internal standards to assess the FFE, and the most of tentatively identified substances showed observed FFE. Our findings suggested that diverse pollutants that could not be covered by target screening alone entered urban water through stormwater runoff during the first flush. This study showcases the applicability of the SNTS in evaluating the FFE of urban pollutants, offering insights for first-flush stormwater monitoring and management.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Chuva , Monitoramento Ambiental/métodos , Movimentos da Água , Poluentes Ambientais/análise , Espectrometria de Massas
2.
Water Res ; 235: 119865, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934536

RESUMO

Urban rainfall events can lead to the runoff of pollutants, including industrial, pesticide, and pharmaceutical chemicals. Transporting micropollutants (MPs) into water systems can harm both human health and aquatic species. Therefore, it is necessary to investigate the dynamics of MPs during rainfall events. However, few studies have examined MPs during rainfall events due to the high analytical expenses and extensive spatiotemporal variability. Few studies have investigated the occurrence patterns of MPs and factors that influence their transport, such as rainfall duration, antecedent dry periods, and variations in streamflow. Moreover, while there have been many analyses of nutrients, suspended solids, and heavy metals during the first flush effect (FFE), studies on the transport of MPs during FFE are insufficient. This study aimed to identify the dynamics of MPs and FFE in an urban catchment, using high-resolution monitoring and machine learning methods. Hierarchical clustering analysis and partial least squares regression (PLSR) were implemented to estimate the similarity between each MP and identify the factors influencing their transport during rainfall events. Eleven dominant MPs comprised 75% of the total MP concentration and had a 100% detection frequency. During rainfall events, pesticides and pharmaceutical MPs showed a higher FFE than industrial MPs. Moreover, the initial 30% of the runoff volume contained 78.0% of pesticide and 50.1% of pharmaceutical substances for events W1 (July 5 to July 6, 2021) and W6 (August 31 to September 1, 2021), respectively. The PLSR model suggested that stormflow (m3/s) and the duration of antecedent dry hours (h) significantly influenced MP dynamics, yielding the variable importance on projection scores greater than 1.0. Hence, our findings indicate that MPs in urban waters should be managed by considering FFE.


Assuntos
Praguicidas , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental , Chuva , Poluentes Químicos da Água/análise , Movimentos da Água , Praguicidas/análise , Preparações Farmacêuticas
3.
Sensors (Basel) ; 22(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35746242

RESUMO

Many modern user interfaces are based on touch, and such sensors are widely used in displays, Internet of Things (IoT) projects, and robotics. From lamps to touchscreens of smartphones, these user interfaces can be found in an array of applications. However, traditional touch sensors are bulky, complicated, inflexible, and difficult-to-wear devices made of stiff materials. The touch screen is gaining further importance with the trend of current IoT technology flexibly and comfortably used on the skin or clothing to affect different aspects of human life. This review presents an updated overview of the recent advances in this area. Exciting advances in various aspects of touch sensing are discussed, with particular focus on materials, manufacturing, enhancements, and applications of flexible wearable sensors. This review further elaborates on the theoretical principles of various types of touch sensors, including resistive, piezoelectric, and capacitive sensors. The traditional and novel hybrid materials and manufacturing technologies of flexible sensors are considered. This review highlights the multidisciplinary applications of flexible touch sensors, such as e-textiles, e-skins, e-control, and e-healthcare. Finally, the obstacles and prospects for future research that are critical to the broader development and adoption of the technology are surveyed.


Assuntos
Robótica , Dispositivos Eletrônicos Vestíveis , Humanos
4.
Water Res ; 218: 118494, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35523035

RESUMO

Harmful algal blooms (HABs) have become a global issue, affecting public health and water industries in numerous countries. Because funds for monitoring HABs are limited, model development may be an alternative approach for understanding and managing HABs. Continuous monitoring based on grab sampling is time-consuming, costly, and labor-intensive. However, improving simulation performance remains a major challenge in modeling, and current methods are limited to simulating phytoplankton (e.g., Microcystis sp., Anabaena sp., Aulacoseira sp., Cyclotella sp., Pediastrum sp., and Eudorina sp.) and zooplankton (e.g., Cyclotella sp., Pediastrum sp., and Eudorina sp.) at the genus level. The traditional modeling approach is limited for evaluating the interactions between phytoplankton and zooplankton. Recently, deep learning (DL) models have been proposed for solving modeling problems because of their large data handling capabilities and model structure flexibilities. In this study, we evaluated the applicability of DL for simulating phytoplankton at the phylum/class and genus levels and zooplankton at the genus level. Our work was an explicit representation of the taxonomic and ecological hierarchy of the DL model structure. The prerequisite for this model design was the data collection at two taxonomic and hierarchical levels. Our model consisted of hierarchical DL with classification transformer (TF) and regression TF models. These DL models were hierarchically connected; the output of the phylum/class level model was transferred to the genus level simulation model, and the output of the genus level model was fed into the zooplankton simulation model. The classification TF model determined the phytoplankton occurrence initiation date, whereas the regression TF model quantified the cell concentration of plankton. The hierarchical DL showed potential to simulate phytoplankton at the phylum/class and genus levels by producing average R2, and root mean standard error values of 0.42 and 0.83 [log(cells mL-1)], respectively. All simulated plankton results closely matched the measured concentrations. Particularly, the simulated cyanobacteria showed good agreement with the measured cell concentration, with an R2 value of 0.72. In addition, our simulated result showed good agreement in peak concentration compared to observations. However, a limitation remained in following the temporal variation of Tintinnopsis sp. and Bosmia sp. Using an importance map from the TF model, water temperature, total phosphorus, and total nitrogen were identified as significant variables influencing phytoplankton and zooplankton blooms. Overall, our study demonstrated that DL can be used for modeling HABs at the phylum/class and genus levels.


Assuntos
Aprendizado Profundo , Zooplâncton , Animais , Ecossistema , Fitoplâncton , Plâncton , Água
5.
J Hazard Mater ; 432: 128714, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35358764

RESUMO

Chemical accidents have threatened drinking water safety and aquatic systems when hazardous chemicals flow into inland waterbodies through pipelines in industrial complexes. In this study, a forecasting system was developed for the prevention of drinking water resource pollution by considering chemical transport/fate through both pipelines and river channels. To this end, we coupled a pipe network model (Storm Water Management Model) with a calibrated hydrodynamic model (Environmental Fluid Dynamics Code). In addition, we investigated whether chemical transport through pipelines would make a difference in chemical concentration predictions. For both pipelines and river channels, the results showed lower peak concentrations than those without pipelines, whereas the time of peak concentration did not change significantly. When chemicals were transported with both pipelines and river channels, the peak concentrations were 25.81% and 41.91% lower than those of chemicals carried directly into the Han and Geum Rivers without the pipeline transport. Further, our system is automated from scenario generation to analysis and usage is straightforward, with a simple input of accident information. The results of this study can be utilized to establish a safe water supply system and preliminary countermeasures against accidental water pollution in the future.


Assuntos
Vazamento de Resíduos Químicos , Água Potável , Poluentes Químicos da Água , Água Potável/análise , Monitoramento Ambiental , Rios/química , Poluentes Químicos da Água/química
6.
Water Res ; 212: 118080, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35114526

RESUMO

Micropollutants (MPs) released into aquatic ecosystems have adverse effects on public health. Hence, monitoring and managing MPs in aquatic systems are imperative. MPs can be quantified by high-resolution mass spectrometry (HRMS) with stable isotope-labeled (SIL) standards. However, high cost of SIL solutions is a significant issue. This study aims to develop a rapid and cost-effective analytical approach to estimate MP concentrations in aquatic systems based on deep learning (DL) and multi-objective optimization. We hypothesized that internal standards could quantify the MP concentrations other than the target substance. Our approach considered the precision of intra-/inter-day repeatability and natural organic matter information to reduce instrumental error and matrix effect. We selected standard solutions to estimate the concentrations of 18 MPs. Among the optimal DL models, DarkNet-53 using nine standard solutions yielded the highest performance, while ResNet-50 yielded the lowest. Overall, this study demonstrated the capability of DL models for estimating MP concentrations.


Assuntos
Aprendizado Profundo , Ecossistema , Isótopos , Espectrometria de Massas , Padrões de Referência
7.
Sci Total Environ ; 806(Pt 4): 150938, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655621

RESUMO

The presence of micropollutants (MPs), including pharmaceutical, industrial, and pesticidal compounds, threatens both human health and the aquatic ecosystem. The development and extensive use of new chemicals have also inevitably led to the accumulation of MPs in aquatic environments. Recreational beaches are especially vulnerable to contamination, affecting humans and aquatic animals via the absorption of MPs in water during marine activities (e.g., swimming, sailing, and windsurfing). Additionally, marine outfalls in an urbanized coastal city can cause serious chemical and microbial pollution on recreational beaches, leading to an increase in adverse effects on public health and the ecological system. Therefore, the aim of this study was to, with the use of network and decision tree analyses, identify the features and factors that influence the change in MP concentrations in a marine outfall. These analyses were conducted to inspect the relationship between each MP and its hierarchical structure as well as hydrometeorological variables. Additionally, a risk analysis was conducted in this study in which the MPs were prioritized based on their optimized risk quotient values. During our monitoring of MP concentrations over time at the marine outfall, high concentrations of pharmaceutical and industrial compounds were detected when the tide level was low after rainfall. Furthermore, results of the risk analysis and the prioritization revealed that a total of 18 substances identified in our study posed a risk to the ecosystem; these include major ecotoxicologically hazardous substances such as telmisartan, mevinphos, and methiocarb. Results of the network analysis demonstrated distinct trends for pharmaceutical and industrial substances, whilst those for pesticide compounds were irregular. Additionally, the hierarchical structures for most MPs consisted of rainfall, tide level, and antecedent dry hours; this implies that these factors influence MP dynamics. These findings will be helpful for establishing chemical contamination management plans for recreational beaches in the future.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Árvores de Decisões , Ecossistema , Monitoramento Ambiental , Humanos , Poluentes Químicos da Água/análise
8.
Water Res ; 207: 117821, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34781184

RESUMO

Many countries have attempted to monitor and predict harmful algal blooms to mitigate related problems and establish management practices. The current alert system-based sampling of cell density is used to intimate the bloom status and to inform rapid and adequate response from water-associated organizations. The objective of this study was to develop an early warning system for cyanobacterial blooms to allow for efficient decision making prior to the occurrence of algal blooms and to guide preemptive actions regarding management practices. In this study, two machine learning models: artificial neural network (ANN) and support vector machine (SVM), were constructed for the timely prediction of alert levels of algal bloom using eight years' worth of meteorological, hydrodynamic, and water quality data in a reservoir where harmful cyanobacterial blooms frequently occur during summer. However, the proportion imbalance on all alert level data as the output variable leads to biased training of the data-driven model and degradation of model prediction performance. Therefore, the synthetic data generated by an adaptive synthetic (ADASYN) sampling method were used to resolve the imbalance of minority class data in the original data and to improve the prediction performance of the models. The results showed that the overall prediction performance yielded by the caution level (L1) and warning level (L2) in the models constructed using a combination of original and synthetic data was higher than the models constructed using original data only. In particular, the optimal ANN and SVM constructed using a combination of original and synthetic data during both training (including validation) and test generated distinctively improved recall and precision values of L1, which is a very critical alert level as it indicates a transition status from normalcy to bloom formation. In addition, both optimal models constructed using synthetic-added data exhibited improvement in recall and precision by more than 33.7% while predicting L-1 and L-2 during the test. Therefore, the application of synthetic data can improve detection performance of machine learning models by solving the imbalance of observed data. Reliable prediction by the improved models can be used to aid the design of management practices to mitigate algal blooms within a reservoir.


Assuntos
Monitoramento Ambiental , Proliferação Nociva de Algas , Aprendizado de Máquina , Redes Neurais de Computação , Qualidade da Água
9.
Water Res ; 203: 117483, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384949

RESUMO

Massive cyanobacterial blooms in river water causes adverse impacts on aquatic ecosystems and water quality. Complex and diverse data sources are available to investigate the cyanobacteria phenomena, including in situ data, synthetic measurements, and remote sensing images. Deep learning attention models can process these intricate sources to forecast cyanobacteria by identifying important variables in the data sources. However, deep learning attention models for predicting cyanobacteria have rarely been studied using an assemblage of various datasets. Thus, in this study, a convolutional neural network (CNN) model with a convolutional block attention module (CNNan) was developed to predict cyanobacterial cell concentrations by using the observed cell data from field monitoring, chlorophyll-a distribution map from hyperspectral image sensing, and simulated water quality outputs from a hydrodynamic model. Then, the prediction performance of the CNNan model was compared to an environmental fluid dynamics code (EFDC) simulation and a CNN model without an attention network. The seasonal variations of the predicted cyanobacteria that was obtained from CNNan showed the best agreement with the observed variations with Nash-Sutcliffe efficiency values higher than 0.76 when compared to the EFDC and CNN predictions. The daily hydrodynamic outputs allowed the prediction of cyanobacteria cells, while the rich information of the chlorophyll-a map contributed to the improvement of the prediction performance at certain periods. Moreover, the attention network visualized the importance of the additional chlorophyll-a map and improved the CNNan model prediction performance by refining the input features. Therefore, this study demonstrated that a deep learning model with data assemblage is practically feasible for predicting the presence of harmful algae in inland water.


Assuntos
Cianobactérias , Aprendizado Profundo , Ecossistema , Monitoramento Ambiental , Qualidade da Água
10.
Sci Total Environ ; 794: 148592, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34217087

RESUMO

Remote sensing techniques have been applied to monitor the spatiotemporal variation of harmful algal blooms (HABs) in many inland waters. However, these studies have been limited to monitor the vertical distribution of HABs due to the optical complexity of inland water. Therefore, this study applied a deep neural network model to monitor the vertical distribution of Chlorophyll-a (Chl-a), phycocyanin (PC), and turbidity (Turb) using drone-borne hyperspectral imagery, in-situ measurement, and meteoroidal data. The pigment concentrations were measured between depths of 0 m and 5.0 m with 0.05 m intervals. Here, four state-of-the-art data-driven model structures (ResNet-18, ResNet-101, GoogLeNet, and Inception v3) were adopted for estimating the vertical distributions of the harmful algal pigments. Among the four models, the ResNet-18 model showed the best performance, with an R2 value of 0.70. In addition, Gradient-weighted Class Activation Mapping (Grad-CAM) substantially provided informative reflectance band ranges near 490 nm and 620 nm in the hyperspectral image for the vertical estimation of pigments. Therefore, this study demonstrated that the explainable deep learning model with drone-borne hyperspectral images has the potential to estimate Chl-a, PC, and Turb vertical distributions and to show influential features that contribute to describing the vertical profile phenomena.


Assuntos
Aprendizado Profundo , Proliferação Nociva de Algas , Clorofila/análise , Clorofila A , Monitoramento Ambiental , Ficocianina
11.
Harmful Algae ; 103: 102007, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33980447

RESUMO

Alexandrium catenella (A. catenella) is a notorious algal species known to cause paralytic shellfish poisoning (PSP) in Korean coastal waters. There have been numerous studies on its temporal and spatial blooms in Korea. However, its bloom dynamics have not been fully understood because of the complexity in physical, chemical, and biological environments. This study aims to identify the factors that influence A. catenella blooms by applying a numerical model and machine learning. Intensive monitoring of A. catenella was conducted to investigate temporal variations in its population and its spatial distribution in the area with frequent occurrences of PSP bloom initiation. Moreover, a numerical model was built to analyze the ocean physical factors related to the bloom of A. catenella. Based on the information obtained from the monitored and simulated results, the decision tree (DT) method was applied to identify factors that caused the bloom. The outbreak of A. catenella was observed in the eastern coastal water of Geoje Island in 2017, recording a peak density of 4 × 104 (cell L-1). Retention time and particle scattering demonstrated that the physical force in 2017 was weaker than that in 2018, as shown by the smaller effects of advection and dispersion in 2017. The decision tree model showed that (1) water temperature below 17.21 °C was ideal for the growth of A. catenella, (2) phosphate influenced the growth of the species, and (3) cell density was accelerated with increasing retention time. The results from DT can contribute to the prediction of A. catenella blooms by determining the conditions that cause bloom initiation. Further, they can be used as a practical approach for mitigating HABs. Thus, machine learning and numerical simulation in this study can be a potential approach for effectively managing the bloom of A. catenella.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Aprendizado de Máquina , República da Coreia , Temperatura
12.
Harmful Algae ; 104: 102029, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34023074

RESUMO

In 2018, the bloom of harmful dinoflagellate Cochlodinium polykrikoides occurred under abnormally high water temperature (WT) conditions caused by heatwaves in Korean coastal water (KCW). To better understand C. polykrikoides bloom at high WTs in 2018, we conducted field survey and laboratory experiments (the physiological and genetic differences between the two strains, CP2013 and CP2018). The heatwave increased the WT from 24.1°C to 29.2°C for two weeks, leading to strong stratification even in mid July (p < 0.01, Chi square = 94.656, Kruskal-Wallis test). Under early stratification conditions, patch blooms formed more earlier than the average outbreak in the last 17 years in KCW, despite high WT reaching 30°C. In laboratory experiments, although there were no genetic differences in the LSU rDNA, both strains showed a significant different growth response to high WTs; above 28°C, CP2013 did not survive, but CP2018 was able to grow, suggesting that CP2018 had potential growth capacity at high WTs. However, the growth rate and yield of the culture (CP2018) were lowered at 30°C. Also, the blooms of C. polykrikoides in 2018 lasted only 3 weeks, which is unusual short compared to the average duration since 2002. The negative correlation between the average WT and duration of C. polykrikoides bloom in previous 17 years (R2 = 0.518, p < 0.01) supports that high WT approaching 30°C is not favorable for C. polykrikoides in KCW. Thus, our findings indicated that in relation to heatwaves, early stratification condition plays a critical role in developing C. polykrikoides blooms, but maintaining bloom are negatively affected under high WT conditions.


Assuntos
Dinoflagellida , DNA Ribossômico , Dinoflagellida/genética , Proliferação Nociva de Algas , Temperatura
13.
J Environ Manage ; 288: 112415, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774562

RESUMO

Understanding the dynamics of harmful algal blooms is important to protect the aquatic ecosystem in regulated rivers and secure human health. In this study, artificial neural network (ANN) and support vector machine (SVM) models were used to predict algae alert levels for the early warning of blooms in a freshwater reservoir. Intensive water-quality, hydrodynamic, and meteorological data were used to train and validate both ANN and SVM models. The Latin-hypercube one-factor-at-a-time (LH-OAT) method and a pattern search algorithm were applied to perform sensitivity analyses for the input variables and to optimize the parameters of the models, respectively. The results indicated that the two models well reproduced the algae alert level based on the time-lag input and output data. In particular, the ANN model showed a better performance than the SVM model, displaying a higher performance value in both training and validation steps. Furthermore, a sampling frequency of 6- and 7-day were determined as efficient early-warning intervals for the freshwater reservoir. Therefore, this study presents an effective early-warning prediction method for algae alert level, which can improve the eutrophication management schemes for freshwater reservoirs.


Assuntos
Ecossistema , Água Doce , Surtos de Doenças , Eutrofização , Proliferação Nociva de Algas , Humanos , Aprendizado de Máquina , Qualidade da Água
14.
Water Res ; 188: 116535, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147564

RESUMO

Similar to the worldwide proliferation of urbanization, micropollutants have been involved in aquatic and ecological environmental systems. These pollutants have the propensity to wreak havoc on human health and the ecological system; hence, it is important to persistently monitor micropollutants in the environment. Micropollutants are commonly quantified via target analysis using high resolution mass spectrometry and the stable isotope labeled (SIL) standard. However, the cost-intensiveness of this standard presents a major obstacle in measuring micropollutants. This study resolved this problem by developing data-driven models, including deep learning (DL) and machine learning (ML), to estimate the concentration of micropollutants without resorting to the SIL standard. Our study hypothesized that natural organic matter (NOM) could replace internal standards if there was a specific mass spectrum (MS) subset, including NOM information, which correlated with an SIL standard peak. Therefore, we analyzed the MS to find the specific MS subsets for replacing the SIL standard peak. Thirty-five alternative MS subsets were determined for applying DL and ML as input data. Thereafter, we trained four different DL models, namely, ResNet101, GoogLeNet, VGG16, and Inception v3, as well as three different ML models, i.e., random forest (RF), support vector machine (SVM), and artificial neural network (ANN). A total of 680 MS data were used for the model training to estimate five different micropollutants, namely Sulpiride, Metformin, and Benzotriazole. Among the DL models, ResNet 101 exhibited the highest model performance, showing that the average validation R2 and MSE were 0.84 and 0.26 ng/L, respectively, while RF was the best in the ML models, manifesting R2 and MSE values of 0.69 and 0.58 ng/L. The trained models showed accurate training and validation results for the estimation of the five micropollutant concentrations. Therefore, this study demonstrates that the suggested analysis has a potential for alternative micropollutant measurement that has rapid and economic vantages.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Humanos , Isótopos , Padrões de Referência , Máquina de Vetores de Suporte
15.
Water Res ; 186: 116349, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882452

RESUMO

Machine learning modeling techniques have emerged as a potential means for predicting algal blooms. In this study, synthetic spatio-temporal water quality data for a river section were generated with a 3D water quality model and used to investigate the capability of a convolutional neural network (CNN) for predicting harmful cyanobacterial blooms. The CNN model displayed a reasonable capacity for short-term predictions of cyanobacteria (Microcystis) biomass. In the nowcasting of Microcystis, the CNN performance had a Nash-Sutcliffe Efficiency (NSE) of 0.87. An increase in the forecast lead time resulted in a decrease in the prediction accuracy, reducing the NSE from 0.87 to 0.58. As the spatial observation density increased from 20% to 100% of the input image grids, the CNN prediction NSE had improved from 0.70 to 0.84. Adding noise to the data resulted in accuracy deterioration, but even at the noise amplitude of 10%, the accuracy was acceptable for some applications, with NSE = 0.76. Visualization of the CNN results characterized its performance variations across the studied river reach. Overall, this study successfully demonstrated the capability of the CNN model for cyanobacterial bloom prediction using high temporal frequency images.


Assuntos
Cianobactérias , Proliferação Nociva de Algas , Monitoramento Ambiental , Redes Neurais de Computação , Rios
16.
Sci Total Environ ; 721: 137725, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32182460

RESUMO

Harmful algal blooms (HABs) of Cochlodinium (aka Margalefidinium) polykrikoides cause huge economic and ecological damages and thus are considered environmental problems. Previous studies uncovered that the formation and collapse of phytoplankton blooms could be closely related to their associated microbes although their roles in C. polykrikoides bloom have not been elucidated yet. To explore the potential interactions between C. polykrikoides and other microbes (archaea, bacteria, and phytoplankton), we collected water samples in the free-living (FL) (0.22 to 3 µm), nanoparticle-associated (NP) (3 to 20 µm), and microparticle-associated (MP) (>20 µm) fractions when C. polykrikoides blooms occurred from July to August in 2016, 2017, and 2018 in the South Sea of Korea. The microbial composition of the C. polykrikoides-associated microbial cluster (Module I) significantly differed from those of other modules associated with Alexandrium, Chaetoceros or Chattonella. Over half of the interspecies interactions in Module I occurred within the module. That is, specific microbial clusters were associated with the C. polykrikoides bloom. Structural equation modeling (SEM) further confirmed the stronger effects of Module I on C. polykrikoides blooms compared to environmental factors. Among the operational taxonomic units (OTUs) directly correlated with C. polykrikoides, Marine Group I was presumed to supply vitamin B12, the essential element for C. polykrikoides growth, while the potential fish pathogens (Micrococcaceae and Piscirickettsiaceae) could contribute to the massive fish death together with C. polykrikoides itself. In addition, the zoospores of Syndiniales, a parasitoid to dinoflagellates, might be related to the sudden collapse of C. polykrikoides blooms. These microbial groups also contributed to significant alterations of the local microbial community structures. Collectively, network analysis and SEM revealed that the C. polykrikoides bloom is concomitant with distinct microbial communities, contributing to the rise and fall of the bloom, and finally determining the local microbial community structures.


Assuntos
Dinoflagellida , Microbiota , Animais , Proliferação Nociva de Algas , Fitoplâncton , República da Coreia
17.
J Hazard Mater ; 320: 442-457, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27585277

RESUMO

PAHs are potentially carcinogenic substances that are persistent in the environment. Increasing concentrations of PAHs were observed due to rapid urbanization, thus; monitoring PAHs concentrations is necessary. However, it is expensive to conduct intensive monitoring activities of a large number of PAHs. This study addressed this issue by developing a multimedia model coupled with a hydrological model (i.e., Soil and Water Assessment Tool (SWAT)) for Taehwa River (TR) watershed in Ulsan, the industrial capital of South Korea. The hydrologic module of the SWAT was calibrated, and further used to simulate the fate and transport of PAHs in soil and waterbody. The model demonstrated that the temporal or seasonal variation of PAHs in soil and waterbody can be well reproduced. Meanwhile, the spatial distribution of PAHs showed that urban areas in TR watershed have the highest PAH loadings compared to rural areas. Sensitivity analyses of the PAH soil and PAH water parameters were also able to determine the critical processes in TR watershed: degradation, deposition, volatilization, and wash off mechanism. We hope that this model will be able to aid the stakeholders in: regulating PAH concentrations emitted by various sources; and also apply the model to other Persistent Organic Pollutants (POPs).

18.
Water Res ; 86: 122-31, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26432400

RESUMO

Currently, continued urbanization and development result in an increase of impervious areas and surface runoff including pollutants. Also one of the greatest issues in pollutant emissions is the first flush effect (FFE), which implies a greater discharge rate of pollutant mass in the early part in the storm. Low impact development (LID) practices have been mentioned as a promising strategy to control urban stormwater runoff and pollution in the urban ecosystem. However, this requires many experimental and modeling efforts to test LID characteristics and propose an adequate guideline for optimizing LID management. In this study, we propose a novel methodology to optimize the sizes of different types of LID by conducting intensive stormwater monitoring and numerical modeling in a commercial site in Korea. The methodology proposed optimizes LID size in an attempt to moderate FFE on a receiving waterbody. Thereby, the main objective of the optimization is to minimize mass first flush (MFF), which is an indicator for quantifying FFE. The optimal sizes of 6 different LIDs ranged from 1.2 mm to 3.0 mm in terms of runoff depths, which significantly moderate the FFE. We hope that the new proposed methodology can be instructive for establishing LID strategies to mitigate FFE.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Movimentos da Água , Poluentes Químicos da Água/química , Poluição Química da Água/prevenção & controle , Monitoramento Ambiental , Modelos Teóricos , Chuva , República da Coreia , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...