Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29391, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38638972

RESUMO

In this study was examined the response of carbon steel to atmospheric corrosion after one-year exposure in Valle de Aburrá, a subregion located in northwestern Colombia. The study involved the assessment of material mass loss and corrosion rate, the characterization of atmospheric aggressiveness, and the analysis of the morphology and composition of corrosion products in five different sites. Climatological and meteorological factors were assessed by testing for chloride content, sulfur dioxide levels, and time of wetness (TOW). The analysis of corrosion products was conducted using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. Based on corrosion rates, two sites exhibited a more aggressive environment, with a corrosivity category of C3, while the remaining sites were categorized as C2. The study confirmed the presence of lepidocrocite and goethite phases on the surface of carbon steel at all test sites. Data analysis revealed that both the TOW and the industrial activity significantly influence the corrosion of this metal.

2.
Heliyon ; 9(9): e19289, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674849

RESUMO

This study investigates and compares plasma electrolytic oxidation (PEO) coatings produced on wrought Ti6Al4V alloy substrates with those resulting from electron beam powder bed fusion (PBF-EB). For a duration of 1000 s, a phosphate/silicate electrolyte with a current density of 50 A/cm2 was employed to fabricate the coatings. Surface and polished cross-sections of the coated specimens underwent SEM and X-ray diffraction (XRD) analyses. The obtained coatings exhibit differences of up to approximately 18% in thickness and formation, as well as in their anatase phase. The anatase phase is present at a level of 54.09% in the substrates processed by PBF-EB and 38.54% in wrought substrates. After 1000 s of PEO, the coatings formed on the wrought substrates exhibited higher porosity and larger pores (>1 µm) compared to those produced on the PBF-EB specimens. The PBF-EB coatings had lower porosity because they contained fewer pores larger than 1 µm. The findings imply that the unique microstructural arrangement of PBF-EB-produced additively made Ti6Al4V materials plays a significant impact in the development and morphological properties of PEO oxide coatings.

3.
Heliyon ; 9(4): e15028, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37123916

RESUMO

Multiple techniques have been developed and implemented around the world to monitor structures and minimize the costs of repairing, maintaining, and losing ceramic building materials due to environmental factors. Understanding the different degradation phenomena that affect ceramic building materials and evaluating their condition can help reduce material losses caused by deterioration and the need for interventions. This study reviews the main forms of atmospheric degradation that affect ceramic materials and the commonly employed methods to evaluate their deterioration. The aim is to illustrate the different types of atmospheric deterioration that affect ceramic materials and to demonstrate the current monitoring methods and testing. In addition to a literature review, a bibliometric analysis was conducted to highlight the available tools to counter atmospheric deterioration. The analysis shows that CO2, sulfates, and temperature are the most important types of degradation for ceramic construction materials. It was also discovered that due to their porous nature, ceramic construction materials require careful control as contaminants and water can easily penetrate them. The two most severe types of deterioration identified in this analysis for reinforced concrete were chloride-induced corrosion and carbonation.

4.
Heliyon ; 8(9): e10438, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36110235

RESUMO

Atmospheric corrosion maps can be used to conduct a fast and graphical assessment of material deterioration in specific geographic environments. These maps are a key tool for selecting the most adequate materials in terms of corrosion resistance, maintenance, and cost-efficiency in outdoor constructions. Several studies have evaluated the effects of environmental factors and pollutants on building materials at local, regional, national, and international levels. However, not enough atmospheric corrosion maps are readily available, possibly due to the complexity of the variables that should be considered to construct them, which include weather, meteorological, and pollution-related factors that vary in space and time. This article presents a thorough literature review of atmospheric corrosion maps published between 1971 and 2021 mainly indexed in the Scopus database. It is complemented with a detailed review of books, journals, and projects by research centers that focuses on the methodologies, parameters, and tools that have been used to construct said maps. Most of the available maps are outdated, which highlights the need for new maps that reflect recent global changes in atmospheric pollution and temperature that can intensify metal deterioration in some places.

5.
Heliyon ; 7(7): e07585, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34381887

RESUMO

Due to the increased use of environmentally friendly fuels, it becomes imperative to evaluate the impact of biofuels on the performance of materials used in auto parts. The corrosive effects of biofuels are important in terms of durability of auto-parts since there is an evidence of the increasing deterioration in automobile parts with the long-term use of biofuels. In this research, the behavior of metals, used in the manufacturing of auto parts, in pure bioethanol (E100) and bioethanol-gasoline blends with 30% (E30), 50% (E50), and 85% (E85) of ethanol content were evaluated. Electrochemical impedance Spectroscopy (EIS) curves were done under static conditions at 45 °C. The metallic materials evaluated were stainless steel, tin, carbon steel and copper. The EIS diagrams showed two capacitive arcs for all materials. The high frequency arc was related to the dielectric response of the fuel blends, while the second one shows the characteristics and activity of the metal/fuel interface. According to the transfer resistance (Rt) obtained from the second arc of the EIS measurements, copper and carbon steel exhibited corrosion susceptibility in all fuel blends, while stainless steel and tin showed good anticorrosion behavior by showing high Rt values. The highest charge transfer resistance was showed by tin, followed by stainless steel, carbon steel and copper. Except for carbon steel and copper, the other set samples were compatible with the evaluated blends.

6.
Heliyon ; 7(5): e06892, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34027149

RESUMO

Additive Manufacturing (AM) or rapid prototyping technologies are presented as one of the best options to produce customized prostheses and implants with high-level requirements in terms of complex geometries, mechanical properties, and short production times. The AM method that has been more investigated to obtain metallic implants for medical and biomedical use is Electron Beam Melting (EBM), which is based on the powder bed fusion technique. One of the most common metals employed to manufacture medical implants is titanium. Although discovered in 1790, titanium and its alloys only started to be used as engineering materials for biomedical prostheses after the 1950s. In the biomedical field, these materials have been mainly employed to facilitate bone adhesion and fixation, as well as for joint replacement surgeries, thanks to their good chemical, mechanical, and biocompatibility properties. Therefore, this study aims to collect relevant and up-to-date information from an exhaustive literature review on EBM and its applications in the medical and biomedical fields. This AM method has become increasingly popular in the manufacturing sector due to its great versatility and geometry control.

7.
Polymers (Basel) ; 10(5)2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-30966545

RESUMO

The aim of the present work is to evaluate the impact of pure palm biodiesel fuel (B100) and biodiesel blends with 0.32% oleic, palmitic, acetic, myristic, and stearic acids on the properties of some polymeric materials used commonly in the manufacture of auto parts such as the polyamide 66 (PA66), polyoxymethylene (POM), and high-density polyethylene (HDPE). The effects of the B100 and B100⁻acid blends on polymeric materials were examined by comparing changes in the gain/loss of mass and by measuring the hardness, the impact strength, and the tensile strength of the materials at the end of the exposure. The characterization of the polymers was carried out before and after exposure by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). After the immersion in B100⁻acids blends, the HDPE exhibited an increase in mass of 5%, which was very similar in all blends. The PA66 showed a small decrease in weight (2% approx.) in all mixtures. The POM presented an increase in the percentage of weight in the mixture of B100 with acetic acid of 0.3%. A decrease was observed in the crystallinity of the HDPE when exposed to blends of B100⁻acids. This behavior may be associated with a plasticizing effect in the HDPE exposed to the blends. The mechanical properties of POM and HDPE showed no significant changes after immersion in the fuels. On the other hand, PA66 exhibited a significant decrease in maximum stress value after immersion in B100, B100⁻oleic acid and B100⁻palmitic acid blends. The variation of the mechanical properties of the PA66 after exposure to B100 was potentiated by addition of organic acids. The assessed polymers did not undergo appreciable changes in the chemical structure of the samples after immersion in the fuels, so the variation in the mechanical properties could be explained by physical absorption of the fuel into the polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...