Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(9): e19743, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810000

RESUMO

As in the case of cancer, the risk of infection increases when the host's immune system is not working properly. It has been shown that toxins produced by the bacteria responsible for bacterial infections can alter the properties of cancer cells as well as their sensitivity to chemotherapy agents. Staphylococcus aureus (S. aureus) is one of the most prevalent pathogens in acute myeloid leukemia (AML) patients and it produces several virulence factors, including Staphylococcal enterotoxin A (SEA) and Staphylococcal enterotoxin B (SEB). Cytotoxicity, transwell migration, invasion assays, and various transcriptomic and gene set enrichment (GSE) analyses were used to determine how SEA and SEB alter cell proliferation, migration, invasion, and Cytarabine (Cyt) resistance in AML cell lines. The treatment of AML cell lines with SEA/SEB caused an increase in cell proliferation and Cyt resistance. Toxins enhanced the proclivity of cells to migrate and invade, with around 50% of cells in the presence of SEA and SEB. Transcriptomic and gene set enrichment analyses, and subsequent PCR validations showed dysregulation of immune related genes and genesets. Apparently, this allows AML cells to escape and survive the undesirable environment created by toxins, possibly via the ER stress signaling pathway. Therefore, SEA and SEB can significantly alter the characteristics of AML cancer cells and evaluation of alterations in responsible immune genes and pathways may be crucial for controlling the progression of cancer. In addition, our results suggest that there may be a strong interaction between the immune related pathways and the ER signaling pathway.

2.
Open Med (Wars) ; 17(1): 1495-1506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213442

RESUMO

Acute myeloid leukemia (AML) is the most heterogeneous hematological disorder and blast cells need to fight against immune system. Natural killer (NK) cells can elicit fast anti-tumor responses in response to surface receptors of tumor cells. NK-cell activity is often impaired in the disease, and there is a risk of insufficient tumor suppression and progression. The aim of this study is to assess the dysfunction of NK cells in AML patients via focusing on two important pathways. We obtained single-cell RNA-sequencing data from NK cells obtained from healthy donors and AML patients. The data were used to perform a wide variety of approaches, including DESeq2 (version 3.9), limma (version 3.26.8) power differential expression analyses, hierarchical clustering, gene set enrichment, and pathway analysis. ATP6AP2, LNPEP, PREP, IGF2R, CTSA, and THOP1 genes were found to be related to the renin-angiotensin system (RAS) family, while DPP3, GLRA3, CRCP, CHRNA5, CHRNE, and CHRNB1 genes were associated with the neurotransmitter pathways. The determined genes are expressed within different patterns in the AML and healthy groups. The relevant molecular pathways and clusters of genes were identified, as well. The cross-talks of NK-cell dysfunction in relation to the RAS and neurotransmitters seem to be important in the genesis of AML.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...