Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 39(6): 1517-20, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24690827

RESUMO

We report on the first experimental realization of coherent combining of parametrically amplified femtosecond pulses. The proposed and implemented two-loop active stabilization system allows us to achieve 110 as relative timing jitter between combined pulses, which is necessary for efficient coherent beam combining. In each channel of the two-channel laser setup, pulses were parametrically amplified in ß-BaB2O4 (BBO) crystals to 50 µJ energy, compressed to 49 fs duration, and then coherently combined with efficiency as high as 97%. Currently, it is the shortest duration of amplified pulses for which coherent combining is demonstrated.

2.
Phys Rev Lett ; 107(3): 030801, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21838344

RESUMO

We develop a concept of atomic clocks where the blackbody radiation shift and its fluctuations can be suppressed by 1-3 orders of magnitude independent of the environmental temperature. The suppression is based on the fact that in a system with two accessible clock transitions (with frequencies ν1 and ν2) which are exposed to the same thermal environment, there exists a "synthetic" frequency ν(syn) ∝ (ν1 - ε12ν2) largely immune to the blackbody radiation shift. For example, in the case of 171Yb+ it is possible to create a synthetic-frequency-based clock in which the fractional blackbody radiation shift can be suppressed to the level of 10(-18) in a broad interval near room temperature (300±15 K). We also propose a realization of our method with the use of an optical frequency comb generator stabilized to both frequencies ν1 and ν2, where the frequency ν(syn) is generated as one of the components of the comb spectrum.

3.
Opt Lett ; 25(23): 1729-31, 2000 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18066328

RESUMO

The absolute frequency of the In(+) 5s(2) (1)S(0)5s5p (3)P(0) clock transition at 237 nm was measured with an accuracy of 1.8 parts in 10(13). Using a phase-coherent frequency chain, we compared the (1)S(0)(3)P(0) transition with a methane-stabilized HeNe laser at 3.39 microm, which was calibrated against an atomic cesium fountain clock. A frequency gap of 37 THz at the fourth harmonic of the HeNe standard was bridged by a frequency comb generated by a mode-locked femtosecond laser. The frequency of the In(+) clock transition was found to be 1,267,402,452,899.92 (0.23) kHz, the accuracy being limited by the uncertainty of the HeNe laser reference. This result represents an improvement in accuracy of more than 2 orders of magnitude over previous measurements of the line and now stands as what is to our knowledge the most accurate measurement of an optical transition in a single ion.s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...