Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(1): 369-378, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150107

RESUMO

Vesicular carriers of drugs are popular for specific targeting and delivery. The most popular vesicles among these are liposomes. However, they suffer from some inherent limitations. In this work, alternative vesicles with enhanced stability, i.e., niosomes and bilosomes have been prepared, characterized, and their delivery efficiency studied. Bilosomes have the additional advantage of being able to withstand the harsh environment of the gastrointestinal tract (GIT). The taurine-derived bile salt (NaTC) was incorporated into the bilosome bilayer. The inspiration behind NaTC insertion is the recent reports on antiaging action and immune function of taurine. Fluorescence probing was used to study the vesicle environment. The entrapment and subsequent release of the important cAMP-specific PDE4 inhibitor/drug Rolipram, which has antibreast cancer properties, was assessed on the breast cancer cell line MCF-7. Rolipram has important therapeutic applications, one of the most significant in recent times being the treatment of Covid-19-triggered pneumonia and cytokine storms. As for cancer chemotherapy, the localization of drug, targeted delivery, and sustained release are extremely important issues, and it seemed worthwhile to explore the potential of the bilosomes and niosomes to entrap and release Rolipram. The important finding is that niosomes perform much better than bilosomes in the hormone-responsive breast cancer mileau MCF-7. Moreover, there was a 4-fold decrease in the IC50 of Rolipram encapsulated in niosomes compared to Rolipram alone. On the other hand, bilosome-encapsulated Rolipram shows higher IC50 value. The results can be further understood by molecular docking studies.


Assuntos
Neoplasias da Mama , Inibidores da Fosfodiesterase 4 , Humanos , Feminino , Rolipram/farmacologia , Rolipram/uso terapêutico , Lipossomos , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Simulação de Acoplamento Molecular , Taurina
2.
Phys Chem Chem Phys ; 25(27): 18197-18214, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37394887

RESUMO

In this work, the fluorescent probe 2-amino-4-(1H-indol-3-yl)-4H-chromene-3-carbonitrile (AICCN) has been used to evaluate its potential as a prospective polarity probe. From detailed fluorescence studies of the probe, it could be shown that AICCN can indeed function as an effective polarity probe. The calculated dipole moments of AICCN in both the ground state and excited state in various solvents lend support to the steady state fluorescence results. It was also shown that AICCN can be used to probe the micropolarity of micelles and can be used successfully for the determination of CMC of the surfactants. The binding process of the probe AICCN to BSA has been followed by plotting the binding isotherms and Scatchard Plots. The time-resolved fluorescence data indicate that the preferred binding site of AICCN in BSA lies close to the buried Trp residue Trp-213 in Domain II. This contention is further supported by the molecular docking studies. The interaction study of the probe AICCN with proteins is relevant for future use of AICCN as a hydrophobic drug. Information was also obtained about the effect of probe binding on the serum albumin structure, which may be correlated to its physiological activity. Thus, the probe AICCN can serve not only as a good reporter of polarity of the microenvironment in biological systems but also as an efficient fluorophore to monitor conformational changes in proteins in future.


Assuntos
Corantes Fluorescentes , Soroalbumina Bovina , Soroalbumina Bovina/química , Simulação de Acoplamento Molecular , Espectrometria de Fluorescência , Estudos Prospectivos , Sítios de Ligação , Corantes Fluorescentes/química , Ligação Proteica , Termodinâmica
3.
Gene ; 877: 147546, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37286017

RESUMO

Circular RNAs, which have covalently closed ends, are in the class of non-coding RNAs. Recent studies reveal that they are associated with various biochemical pathways. One such involvement of circular RNAs is in the onset of different types of cancers. Though the circular RNAs are known as non-coding RNAs, some of them are found to possess the capacities to code for proteins. One such circular RNA is hsa-circ-0000437 which is known to code for a short peptide referred to as CORO1C-47aa. The peptide has anti-angiogenic activity and is associated with the prevention of endometrial cancer. The peptide binds to the PAS-B domain of the Aryl hydrocarbon Receptor Nuclear Translocator (ARNT). However, till date only the amino acid sequence of the peptide is known and no structural details of the peptide are available. Therefore, in this work, our aim was to predict how the peptide would fold and what could be its possible ligand binding sites. We used computational tools to determine the structure of the peptide refined further by molecular dynamics simulations. We then performed molecular docking simulations of the peptide with its known binding partner ARNT to gain an insight into the modes of binding as the process is associated with endometrial cancer. The possible ligand binding sites along-with the natures of the possible other different ligands of the peptide were analyzed further. From this structure function analysis study, we tried to elucidate the plausible mechanism of the involvements of the peptide in the onset of endometrial cancer. This is the first report on the structural characterization of the peptide and its modes of interactions with the partner protein ARNT. This study may therefore be useful in determining the structures of new drug candidates for the treatment of endometrial cancer.


Assuntos
Neoplasias do Endométrio , RNA Circular , Humanos , Feminino , RNA Circular/genética , Simulação de Acoplamento Molecular , Ligantes , Peptídeos/genética , Peptídeos/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto , Proteínas/metabolismo , Neoplasias do Endométrio/genética , Receptores de Hidrocarboneto Arílico/genética
4.
Gene ; 857: 147183, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36623675

RESUMO

Parkinson's disease (PD) is a very common neurodegenerative disorder and is considered to be one of the most severe disorders worldwide. Mutations in some PD causing genes are responsible for the early onset of the disease. Pathogenic variants in parkin, PINK1 and DJ1 genes can cause early-onset of PD. Many PINK1 gene mutations have been reported, but not all variants are pathogenic. The gene product of PINK1, also known as PINK1 protein, has 581 amino acid residues in it. Several different mutations are present throughout the kinase domain of PINK1 protein. In this work, we used in silico approaches to analyze the different types of mutations that are distributed in the kinase domain of the PINK1 protein. Based on our results, we categorized the mutations as high, moderate and low pathogenic variants. Furthermore, we performed molecular dynamics simulations of the pathogenic PINK1 variants to decipher their possible impacts on the structure and made a comparison with the wild type PINK1. In conclusion, we suggested the possible mechanistic roles of the pathogenic variants of PINK1 kinase domain that can affect its function. These pathogenic variants are the causative agents of early onset of PD called autosomal recessive Parkinson disease.


Assuntos
Doença de Parkinson , Humanos , Mutação , Doença de Parkinson/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
5.
Appl Biochem Biotechnol ; 195(1): 639-654, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36121634

RESUMO

Parkinson's disease (PD) is considered to be a highly severe neurological disorder. PD occurs due to a decrease in dopamine production by the degeneration of dopamine-secreting neurons. Genetic mutations, environmental toxins and lifestyle are some of the risk factors of the progressive neurodegenerative disorder PD. Parkin protein, which is encoded by the PARK gene, is one of the important proteins, which is one of the causative agents. The Parkin protein has several mutations which lead to the development of the disease. Apart from PD, the mutations in Parkin also showed to be responsible for the onset of diseases like cancers. It is reported that the E28K mutation in the Ubl domain of parkin is highly deleterious and responsible for the onset of melanoma. This necessitates the development of new therapeutics against PD. Molecules like levodopa, carbidopa, monoamine oxidase type B inhibitors (MBO inhibitors), dopamine agonists, anticholinergics and amantadine are some commonly used drugs used to treat PD. Recently, there have been increasing evidence which shows that cigarette smoking and consumptions of coffee and tea could have important roles in modulating the risk of PD. Therefore, we planned to analyse the molecular mechanism of the binding interactions of nicotine, caffeine and the polyphenol ( -)-epigallocatechin-3-gallate (EGCG) from green tea with Parkin protein to predict their therapeutic potentials in PD targeting the E28K mutation. We focused on E28K mutant of Parkin as this mutant form of parkin has been shown to be the most pathogenic one. We could identify the potential therapeutic aspects of these natural products to prevent the onset of PD. This work may therefore be considered to be the first of its kind which would take into consideration the environmental toxicological approach in designing natural product inhibitors against the onset of PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Nicotina , Cafeína , Dopamina/uso terapêutico , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Mutação
6.
Biochem Biophys Res Commun ; 635: 108-113, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36265283

RESUMO

The Mammalian sterile 20 kinase (Mst) pathway controls organ development by regulating cell proliferation through apoptosis and has a noncanonical role in cancer. Overexpression of the peptide translated from circular RNA, circPPP1R12A, corelated with the activation of YAP, an oncogene whose expression is triggered upon dysregulation of Mst signalling. The exact mode of molecular interaction(s) leading to inactivation of the Mst pathway by this peptide is hitherto unknown. Mst1 and Mst2 are two prime proteins that require dimerization with their scaffold protein, Sav1 at the early step of Mst signalling. We have investigated the interaction of Mst1/2 proteins with this peptide using molecular docking and molecular dynamics simulation studies. The amino acids involved in binding of the peptide were identified and a comparison between the binding interfaces of Mst1/2 - peptide with Mst1/2 - Sav1 complexes indicated that the binding of the peptide to these Mst proteins may prevent the interactions of these proteins with Sav1. Studying the possible binding modes of Sav1 to the Mst proteins already complexed with the peptide further confirmed that the binding of the peptide may hinder their activation. The in-silico study indicated for the first time the possible molecular mechanism of how the peptide can promote cancer by interfering with the Mst pathway.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ciclo Celular/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Peptídeos , Mamíferos/metabolismo
7.
J Mol Model ; 28(10): 295, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064977

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen. It synthesizes the poison called Hydrogen Cyanide (HCN). The synthesis of HCN is mediated by the enzyme HCN synthase which is obtained from the hcnABC operon and the transcription of the hcnABC operon is mediated by three proteins LasR, RhlR, and ANR. In our previous works, we analyzed the activation process of RhlR and LasR proteins by their cognate auto-inducer ligands (N-butanoyl-L-homoserine lactone and N-(3-oxododecanoyl)-homoserine lactone respectively). In this work, we attempted to identify some multi-targeting ligands which would be able to destroy the structural integrity of both the RhlR and LasR proteins using steered MD simulations. We used the virtual screening of ligand libraries, and for that purpose, we used the NCI drug database. We selected the top 4 ligands from our virtual screening experiments. We then tried to check their relative binding affinities with the LasR and RhlR proteins in comparison to their native auto-inducer ligands. Through this work, we were able to identify 4 such ligands which were capable of binding to both the RhlR and LasR proteins in a better way than their native auto-inducer ligands. The efficacies of these ligands to actually perturb the structural integrity of RhlR and LasR proteins could be tested in wet lab. The work is the first work in the field of structure-based drug design to come up with possible multi-targeting drug-like structures against the RhlR and LasR proteins from Pseudomonas aeruginosa.


Assuntos
Reposicionamento de Medicamentos , Pseudomonas aeruginosa , Proteínas de Bactérias/metabolismo , Humanos , Ligantes , Pseudomonas aeruginosa/metabolismo , Transativadores/metabolismo
8.
Biochem Biophys Res Commun ; 630: 36-40, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36137323

RESUMO

CircRNAs have gained importance in recent times due to their involvement in gene regulation and also in the prognosis of cancer. Generally, the circRNA directly interact with miRNA or RNA binding proteins to exert their action, but some of them can be translated. These translated peptides often participate in the regulation of cellular processes. The circPPP1R12A translated peptide has been shown to influence the functioning of the Mst pathway. The Mst signaling is noteworthy for its role in the process of development, but it also has a function as a regulator of apoptosis, which is significant for regulation of cancer. Overexpression of this novel peptide deactivates the Mst signaling to induce the expression of the proliferative oncogene, Yap. Its molecular interaction with the molecules in the Mst pathway is hitherto unknown. In this short report we present our findings from in-silico studies the plausible structure of the peptide through bioinformatics and dynamics simulation studies. This is the first such report on the structure of the novel peptide encoded by circPPP1R12A, which could be important to predict in future its molecular interactions to understand its functionality.


Assuntos
MicroRNAs , RNA Circular , Biologia Computacional , Perfilação da Expressão Gênica , MicroRNAs/genética , Peptídeos/genética , RNA/genética
9.
Life Sci ; 305: 120769, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35792182

RESUMO

BACKGROUND: Type 1 Diabetes mellitus initiates by loss of pancreatic activity which affects other major organs leading to multi-organ failure. Lupeol, a novel phytochemical, is emerging as a potent bioactive molecule. However, the effect of lupeol on hyperglycaemia is not clearly understood. This study delivers an elaborate vision towards the detailed molecular pathway of lupeol against STZ induced diabetic difficulties of the pancreas. METHOD: The current experiments were designed to focus on the ameliorative effect of the triterpene in combating oxidative damage on the pancreas in a preclinical streptozotocin induced mouse model. After diabetic induction, the animals were subjected to administration with 75 mg kg-1 body weight of lupeol, thrice a week for 7 weeks. Histological measurements were done to investigate the anatomy of the pancreas as well as molecular mechanisms were explored. RESULTS: The compound was found to regulate several hyperglycaemic and oxidative stress related markers. Lupeol treatment also reversed the expression levels of inflammatory cytokines (TNF-α and IL-1ß) as well as attenuated the NF-κB mediated inflammatory and extrinsic apoptotic pathway. DISCUSSION: These findings in preclinical streptozotocin induced in vivo mouse model strongly suggest the discovery of novel properties of lupeol against oxidative stress in pancreatic ß cells by regulating the NF-κB and extrinsic apoptotic pathway.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Ilhotas Pancreáticas , Animais , Apoptose , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Obesos , NF-kappa B/metabolismo , Estresse Oxidativo , Triterpenos Pentacíclicos , Estreptozocina/farmacologia
10.
Bioinorg Chem Appl ; 2022: 8453159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464734

RESUMO

Phenalenyl (PLY)-based metal complexes are a new addition to the metal complex family. Various applications of metal-based phenalenyl complexes (metal-PLY) have been reported, such as catalyst, quantum spin simulators, spin electronic devices, and molecular conductors, but the biological significance of metal-PLY (metal = Co(II), Mn(III), Ni(II), Fe(III), and Al(III)) systems has yet to be explored. In this study, the anticancer properties of such complexes were investigated in ovarian cancer cells (SKOV3 and HEY A8), and the cytotoxicity was comparable to that of other platinum-based drugs. Antibacterial activity of the metal-PLY complexes against both gram-negative (E. coli) and gram-positive (S. aureus) bacteria was studied using a disk diffusion test and minimum inhibitory concentration (MIC) methods. All five metal-PLY complexes showed significant antibacterial activity against both bacterial strains. The antioxidant properties of metal-PLY complexes were evaluated following the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method and were acceptable. The DNA-binding properties of these metal-PLY complexes were investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements, and thermal denaturation methods. Experimental evidence revealed that the complexes bind to DNA through intercalation, and the molecular docking study supported this conclusion.

11.
Virus Res ; 315: 198768, 2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35398454

RESUMO

COVID-19 caused by SARS-CoV-2 virus has had profound impact on the world in the past two years. Intense research is going on to find effective drugs to combat the disease. Over the past year several vaccines were approved for immunization. But SARS-CoV-2 being an RNA virus is continuously mutating to generate new variants, some of which develop features of immune escape. This raised serious doubts over the long-term efficacy of the vaccines. We have identified a unique mannose binding plant lectin from Narcissus tazetta bulb, NTL-125, which effectively inhibits SARS-CoV-2 replication in Vero-E6 cell line. In silico docking studies revealed that NTL-125 has strong affinity to viral Spike RBD protein, preventing it from attaching to hACE2 receptor, the gateway to cellular entry. Binding analyses revealed that all the mutant variants of Spike protein also have stronger affinity for NTL-125 than hACE2. The unique α-helical tail of NTL-125 plays most important role in binding to RBD of Spike. NTL-125 also interacts effectively with some glycan moieties of S-protein in addition to amino acid residues adding to the binding strength. Thus, NTL-125 is a highly potential antiviral compound of natural origin against SARS-CoV-2 and may serve as an important therapeutic for management of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , Lectinas de Plantas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , COVID-19 , Humanos , Narcissus/química , Lectinas de Plantas/farmacologia , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/química
12.
Free Radic Biol Med ; 181: 221-234, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35150824

RESUMO

The healing of damaged tissues in gastric tract starts with the extracellular matrix (ECM) remodeling by the action of matrix metalloproteinases (MMPs). Particularly, MMP-2 (gelatinase-A) maintains ECM structure and function by degrading type IV collagen, the major component of basement membranes and by clearing denatured collagen. The proteolytic activities of MMPs are critically balanced by endogenous tissue inhibitors of metalloproteinases (TIMPs) and disruption of this balance results in several diseases. The well-known drug omeprazole is a proton pump inhibitor used for curing gastric ulcer. However, the action of omeprazole in ECM remodeling on gastroprotection has never been explored. Herein, using rat model of gastric ulcer, we report that restraint cold stress caused increase apoptosis to surface epithelia of gastric tissues along with TIMP-3 upregulation and inhibition of MMP-2 activity thereon. In contrast, omeprazole treatment suppressed TIMP-3 while increasing MMP-2 activity and thereby, restoring MMP-2/TIMP-3 balance. Additionally, nanomolar binding constant (Kd = 318 nM) of omeprazole with purified MMP-2 indicates a direct effect of omeprazole in restoring MMP-2 activity. Further in silico simulations revealed a plausible mechanism of action of omeprazole for TIMP-3 deactivation. Altogether, omeprazole restores MMP-2 activity and reduces apoptosis while preventing acute stress-induced gastric ulcer that occurs via suppression of nuclear factor kappa B (NF-κB) activity and peroxisome proliferator-activated receptor gamma activity (PPAR-γ). This represents an unprecedented correlation between physical docking of drug molecule to a protease and the severity of organ injury and provides a novel therapeutic approach to prevent stress induced tissue damage.


Assuntos
Metaloproteinase 2 da Matriz , Úlcera Gástrica , Animais , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Omeprazol/farmacologia , Ratos , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/metabolismo , Úlcera Gástrica/prevenção & controle , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo
13.
J Biomol Struct Dyn ; 40(14): 6634-6641, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33612076

RESUMO

The SARS-CoV-2 pandemic has become a global threat. It has become very difficult to control the spreading of the virus. The virus is a RNA virus and the virulence of the virus is mediated by three virulence causing proteins, viz., Nsp1, Nsp3c and ORF7. So far the drug designing endeavors against the virus have been being targeted towards the spike protein which is responsible for the entry of the virus inside human host as well as the RNA dependent RNA polymerase. However, no effective treatment against the virus has so far been developed. In the present situation, an attempt has been made to target the virulence protein factor Nsp1 which binds to the 40S ribosomal subunit of the human host. We tried to target the Nsp1 by in-silico virtual screening of ligand libraries. We built the three dimensional structure of Nsp1 and used the structure to screen the ChEMBL drug library. We used molecular docking simulations of the top6 screened ligands with Nsp1 and subjected the liagnd-Nsp1 complexes to molecular dynamics simulations to analyze the behaviors of the ligands in a virtual cell. From our analysis we could predict that the ligands bearing the ChEMBL identifiers, CHEMBL1096281, CHEMBL2022920, CHEMBL175656, had the best binding affinity values with Nsp1. Therefore, these ligand molecules may be tested in wet-lab for further analysis. This is the first report to target the virulence factor Nsp1 from SARS-CoV-2. Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas não Estruturais Virais/química
14.
Chem Asian J ; 16(24): 4018-4036, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34643055

RESUMO

Developing non-immunogenic therapeutic biomolecules for facilitating blood clotting followed by wound healing via therapeutic angiogenesis, still remains a formidable challenge. Excessive blood loss of accident victims and battalions cause a huge number of deaths worldwide. Patients with inherited bleeding disorders face acute complications during injury and post-surgery. Biologically-inspired peptide-based hemostat can act as a potential therapeutic for handling coagulopathy. Additionally, non-healing wounds for patients having ischemic diseases can cause severe clinical complications. Advancement in stabilized growth-factor-based proangiogenic therapy may offer effective possibilities for the treatment of ischemic pathology. This review will discuss nature-inspired biocompatible stabilized peptide- and protein-based molecular medicines to serve unmet medical challenges for handling traumatic coagulopathy and impaired wound healing.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos/farmacologia , Proteínas/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Coagulação Sanguínea/efeitos dos fármacos , Coagulação Sanguínea/fisiologia , Sistemas de Liberação de Medicamentos , Hemostáticos/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neovascularização Fisiológica/efeitos dos fármacos , Peptídeos/genética , Engenharia de Proteínas , Proteínas/genética , Cicatrização/fisiologia
15.
Appl Biochem Biotechnol ; 193(7): 2076-2086, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33559759

RESUMO

Circular RNAs belong to the class of non-coding RNA molecules, though surprisingly some of them have protein-coding potentials. However, the circular RNA circ-SHPRH is known to code for an unusual protein known as SHPRH-146aa. However, the molecular level details of the protein are not yet identified. It was proposed that the protein has its role in glioblastoma. Therefore, in this work, an attempt was made to decipher the various structural features of SHPRH-146aa. The binding interactions of the protein SHPRH-146aa with its partner protein DTL were also analyzed. The main aim of the work was to decipher the characteristics features of this unusual protein and the region on SHPRH-146aa that would form different types of non-covalent binding interactions both among itself as well as with its binding partner. In this work, we tried to elucidate the various structural and physico-chemical features of the protein as well as its mode of interactions with its binding partner. The study would therefore pave the pathway to design future wet lab experiments to delineate the appropriate structural features of the protein as well as its association with glioblastoma and neuro-degenerative diseases.


Assuntos
DNA Helicases/química , Peptídeos/química , Proteínas Supressoras de Tumor/química , Ubiquitina-Proteína Ligases/química , DNA Helicases/genética , Humanos , Peptídeos/genética , Estrutura Secundária de Proteína , RNA Circular/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética
16.
J Mol Model ; 27(3): 76, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33555486

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen. It causes secondary infections in patients suffering from cancer and other immunological disorders. The pathogenicity of the organism is dependent on the ability of the organism to code for hydrogen cyanide (HCN), the synthesis of which is mediated by HCN synthase enzyme. HCN synthase is encoded by hcnABC operon. The transcription of the operon is controlled by a complex interplay between the proteins LasR and RhlR. Till date, there is no report that deals with the binding interactions of the RhlR-LasR heterodimer with the promoter DNA region of the hcnABC operon. We, for the first time, tried to analyse the binding modes of the RhlR-LasR heterodimer with the promoter DNA regions. From our work, we could predict the importance of a specific amino acid residue Phe214 from RhlR which might be considered to have the desired specificity to bind to the promoter DNA. Therefore, the amino acid Phe214 may be targeted to develop suitable ligands to eradicate the spread of secondary infections by Pseudomonas aeruginosa.


Assuntos
Proteínas de Bactérias/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2/química , Regiões Promotoras Genéticas , Transativadores/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cianeto de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2/metabolismo , Ligação Proteica , Multimerização Proteica , Pseudomonas aeruginosa , Transativadores/metabolismo
17.
Appl Biochem Biotechnol ; 193(6): 1836-1852, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33570730

RESUMO

Small heat shock proteins (sHSPs), often known as molecular chaperones, are most prevalent in nature. Under certain stress-induced conditions, these sHSPs act as an ATP-independent variation and thus prevent the inactivation of various non-native substrate proteins and their aggregation. They also assist other ATP-dependent chaperones in the refolding of these substrates. In the case of prokaryotes and lower eukaryotes, the chaperone functions of sHSPs can bind a wide range of cellular proteins but preferentially protect translation-related proteins and metabolic enzymes. Eukaryotes usually encode a larger number of sHSPs than those of prokaryotes. The chaperone functions of mammalian sHSPs are regulated by phosphorylation in cells and also by temperature. Their sHSPs have different sub-cellular compartments and cell/tissue specificity. The substrate proteins of mammalian sHSPs or eukaryotic sHSPs accordingly reflect their multi-cellular complexity. The sHSPs of animals play roles in different physiological processes as cell differentiation, apoptosis, and longevity. In this work, the characterization, location, tissue specificity, and functional diversity of sHSPs from seven different mammalian species with special emphasis on humans have been studied. Through this extensive work, a novel and significant attempt have been made to classify them based on their omnipresence, tissue specificity, localization, secondary structure, probable mutations, and evolutionary significance.


Assuntos
Simulação por Computador , Proteínas de Choque Térmico Pequenas , Animais , Bovinos , Cães , Proteínas de Choque Térmico Pequenas/química , Proteínas de Choque Térmico Pequenas/classificação , Proteínas de Choque Térmico Pequenas/metabolismo , Humanos , Macaca mulatta , Camundongos , Especificidade de Órgãos , Pan troglodytes , Fosforilação , Estrutura Secundária de Proteína
18.
Appl Biochem Biotechnol ; 193(6): 1603-1616, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33471285

RESUMO

Mutations in parkin, which is encoded by the PARK2 gene, are associated with a rare form of Parkinson's disease called autosomal recessive juvenile parkinsonism (ARJP). Parkin is a member of RBR family of E3 ubiquitin ligase. Parkin contains a RING1-In-Between-Ring (IBR)-RING2 motif. The IBR domain is located at the C-terminal end of the parkin protein. Two zinc-binding sites are present in the IBR domain which shows zinc ion-dependent folding and maintains the orientation and geometry of RING domains. So, mutation in a zinc-binding region can be responsible for improper folding of parkin protein, which eventually affects the protein structure and function. Abnormalities in parkin protein increase the aggregation of mis-folded proteins in the brain cell. As a consequence, cellular toxicity occurs. The IBR domain also interacts with UbcH7 and UbcH8 proteins belonging to E2 protein family and facilitates synphilin-1, Sept5, and SIM2 protein ubiquitination. It is reported that missense mutation in parkin protein are responsible for autosomal recessive juvenile Parkinson disease. In this work, we first collected the missense mutations in the IBR domain from literature and sequence databases. Then, using various computational tools, we predicted their pathogenicity and involvements in causing possible changes in various protein properties. Evolutionary conservation of amino acids, solvent accessible surface areas, the physico-chemical properties, and changes of protein structure were analyzed. We, for the first time, analyzed the effects of these mutations in parkin to decipher the plausible molecular mechanism of Parkinson's disease.


Assuntos
Bases de Dados de Ácidos Nucleicos , Mutação , Ubiquitina-Proteína Ligases/genética , Motivos de Aminoácidos , Humanos , Domínios Proteicos , Ubiquitina-Proteína Ligases/metabolismo , Zinco/metabolismo
19.
J Biomol Struct Dyn ; 39(8): 2771-2787, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32276557

RESUMO

The gamma-proteobacteria Allochromatium vinosum DSM 180T (A. vinosum) encodes the sulfur oxidizing dsr operon comprising of 15 genes. Dsr proteins are involved in oxidation of sulfur globules produced as an obligatory intermediate during the sulfur oxidation process. The dsrA and dsrB gene products are known to function as a α2ß2 hetero-tetramer and the protein complex plays the catalytic role in sulfur oxidation process. DsrC has a highly conserved C-terminal domain that forms a flexible arm, where two strictly conserved cysteines were found to act as a substrate donating residue for DsrAB instead of being a subunit of this redox enzyme. Therefore, to elucidate the molecular mechanism of the sulfur oxidation process here an attempt was made to study the dynamics, stability and binding mechanisms of DsrAB and DsrC proteins through computational docking and molecular dynamics (MD) simulations. This structure function relationship investigation revealed that the C-terminal domain of DsrC interacts with DsrA of DsrAB protein complex for catalytic functions. Some basic amino acid residues of DsrC are found to form the catalytic pockets along with DsrAB protein complex where the sulfur anions bind to get oxidized. Structural dynamics and fluctuations as well as the secondary structural alterations study revealed the possible regions responsible for protein-protein interactions. Principal Component Analysis (PCA) of protein motions displayed that the collective motions of DsrAB-DsrC complex was higher and more anti-correlated than the unbound DsrAB form. The present molecular insight study would therefore help researchers to predict the plausible biochemical mechanism of sulfur oxidation process in sulfur metabolic pathways in near future. Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas de Bactérias , Proteobactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chromatiaceae , Oxirredução , Proteobactérias/metabolismo , Enxofre
20.
Genomics ; 113(1 Pt 2): 1129-1140, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189776

RESUMO

COVID-19 pandemic caused by SARS-CoV-2 has already claimed millions of lives worldwide due to the absence of a suitable anti-viral therapy. The CoV envelope (E) protein, which has not received much attention so far, is a 75 amino acid long integral membrane protein involved in assembly and release of the virus inside the host. Here we have used artificial intelligence (AI) and pattern recognition techniques for initial screening of FDA approved pharmaceuticals and nutraceuticals to target this E protein. Subsequently, molecular docking simulations have been performed between the ligands and target protein to screen a set of 9 ligand molecules. Finally, we have provided detailed insight into their mechanisms of action related to the varied symptoms of infected patients.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/dietoterapia , Proteínas do Envelope de Coronavírus/efeitos dos fármacos , Suplementos Nutricionais , Reposicionamento de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Antivirais/uso terapêutico , Inteligência Artificial , COVID-19/virologia , Sequência Conservada , Proteínas do Envelope de Coronavírus/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Aprendizado de Máquina , Modelos Moleculares , Simulação de Acoplamento Molecular , Pandemias , Reconhecimento Automatizado de Padrão , SARS-CoV-2/química , SARS-CoV-2/genética , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...