Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(11): 105333, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36325075

RESUMO

CRISPR effector Cas13 recognizes and degrades RNA molecules that are complementary to its guide RNA (gRNA) and possesses potential as an antiviral biotechnology because it can degrade viral mRNA and RNA genomes. Because multiplexed targeting is a critical strategy to improve viral suppression, we developed a strategy to design of gRNAs where individual gRNAs have maximized activity at multiple viral targets, simultaneously, by exploiting the molecular biophysics of promiscuous target recognition by Cas13. These "polyvalent" gRNA sequences ("pgRNAs") provide superior antiviral elimination across tissue/organ scales in a higher organism (Nicotiana benthamiana) compared to conventionally-designed gRNAs-reducing detectable viral RNA by >30-fold, despite lacking perfect complementarity with either of their targets and, when multiplexed, reducing viral RNA by >99.5%. Pairs of pgRNA-targetable sequences are abundant in the genomes of RNA viruses, and this work highlights the need for specific approaches to the challenges of targeting viruses in eukaryotes using CRISPR.

2.
Ann N Y Acad Sci ; 1506(1): 35-54, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34435370

RESUMO

Facing the challenges of the world's food sources posed by a growing global population and a warming climate will require improvements in plant breeding and technology. Enhancing crop resiliency and yield via genome engineering will undoubtedly be a key part of the solution. The advent of new tools, such as CRIPSR/Cas, has ushered in significant advances in plant genome engineering. However, several serious challenges remain in achieving this goal. Among them are efficient transformation and plant regeneration for most crop species, low frequency of some editing applications, and high attrition rates. On March 8 and 9, 2021, experts in plant genome engineering and breeding from academia and industry met virtually for the Keystone eSymposium "Plant Genome Engineering: From Lab to Field" to discuss advances in genome editing tools, plant transformation, plant breeding, and crop trait development, all vital for transferring the benefits of novel technologies to the field.


Assuntos
Congressos como Assunto , Produtos Agrícolas/genética , Engenharia Genética/métodos , Genoma de Planta/genética , Melhoramento Vegetal/métodos , Relatório de Pesquisa , Sistemas CRISPR-Cas/genética , Congressos como Assunto/tendências , Edição de Genes/métodos , Edição de Genes/tendências , Marcação de Genes/métodos , Marcação de Genes/tendências , Engenharia Genética/tendências
3.
Plant Physiol ; 183(3): 1376-1390, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32321840

RESUMO

Glucosinolates (GSLs) are sulfur-containing defense metabolites produced in the Brassicales, including the model plant Arabidopsis (Arabidopsis thaliana). Previous work suggests that specific GSLs may function as signals to provide direct feedback regulation within the plant to calibrate defense and growth. These GSLs include allyl-GSL, a defense metabolite that is one of the most widespread GSLs in Brassicaceae and has also been associated with growth inhibition. Here we show that at least three separate potential catabolic products of allyl-GSL or closely related compounds affect growth and development by altering different mechanisms influencing plant development. Two of the catabolites, raphanusamic acid and 3-butenoic acid, differentially affect processes downstream of the auxin signaling cascade. Another catabolite, acrylic acid, affects meristem development by influencing the progression of the cell cycle. These independent signaling events propagated by the different catabolites enable the plant to execute a specific response that is optimal to any given environment.


Assuntos
Glucosinolatos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Acrilatos/farmacologia , Glucosinolatos/química , Glucosinolatos/farmacologia , Ácidos Indolacéticos/farmacologia , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Modelos Biológicos , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Tiazóis/análise , Tionas/análise
4.
EMBO J ; 37(2): 255-268, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29233834

RESUMO

The cullin-RING E3 ligases (CRLs) regulate diverse cellular processes in all eukaryotes. CRL activity is controlled by several proteins or protein complexes, including NEDD8, CAND1, and the CSN Recently, a mammalian protein called Glomulin (GLMN) was shown to inhibit CRLs by binding to the RING BOX (RBX1) subunit and preventing binding to the ubiquitin-conjugating enzyme. Here, we show that Arabidopsis ABERRANT LATERAL ROOT FORMATION4 (ALF4) is an ortholog of GLMN The alf4 mutant exhibits a phenotype that suggests defects in plant hormone response. We show that ALF4 binds to RBX1 and inhibits the activity of SCFTIR1, an E3 ligase responsible for degradation of the Aux/IAA transcriptional repressors. In vivo, the alf4 mutation destabilizes the CUL1 subunit of the SCF Reduced CUL1 levels are associated with increased levels of the Aux/IAA proteins as well as the DELLA repressors, substrate of SCFSLY1 We propose that the alf4 phenotype is partly due to increased levels of the Aux/IAA and DELLA proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Culina/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Culina/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Mutação , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/genética
5.
Plant Cell ; 27(1): 9-19, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25604443

RESUMO

Auxin regulates a vast array of growth and developmental processes throughout the life cycle of plants. Auxin responses are highly context dependent and can involve changes in cell division, cell expansion, and cell fate. The complexity of the auxin response is illustrated by the recent finding that the auxin-responsive gene set differs significantly between different cell types in the root. Auxin regulation of transcription involves a core pathway consisting of the TIR1/AFB F-box proteins, the Aux/IAA transcriptional repressors, and the ARF transcription factors. Auxin is perceived by a transient coreceptor complex consisting of a TIR1/AFB protein and an Aux/IAA protein. Auxin binding to the coreceptor results in degradation of the Aux/IAAs and derepression of ARF-based transcription. Although the basic outlines of this pathway are now well established, it remains unclear how specificity of the pathway is conferred. However, recent results, focusing on the ways that these three families of proteins interact, are starting to provide important clues.


Assuntos
Ácidos Indolacéticos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
6.
Plant Signal Behav ; 8(2): e22813, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23154505

RESUMO

Medicago truncatula NIP/LATD gene, required for symbiotic nitrogen fixing nodule and root architecture development, encodes a member of the NRT1(PTR) family that demonstrates high-affinity nitrate transport in Xenopus laevis oocytes. Of three Mtnip/latd mutant proteins, one retains high-affinity nitrate transport in oocytes, while the other two are nitrate-transport defective. To further examine the mutant proteins' transport properties, the missense Mtnip/latd alleles were expressed in Arabidopsis thaliana chl1-5, resistant to the herbicide chlorate because of a deletion spanning the nitrate transporter AtNRT1.1(CHL1) gene. Mtnip-3 expression restored chlorate sensitivity in the Atchl1-5 mutant, similar to wild type MtNIP/LATD, while Mtnip-1 expression did not. The high-affinity nitrate transporter AtNRT2.1 gene was expressed in Mtnip-1 mutant roots; it did not complement, which could be caused by several factors. Together, these findings support the hypothesis that MtNIP/LATD may have another biochemical activity.


Assuntos
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Alelos , Transporte Biológico/genética , Transporte Biológico/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Medicago truncatula/genética , Proteínas de Plantas/genética
7.
Plant Physiol ; 160(2): 906-16, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22858636

RESUMO

The Medicago truncatula NIP/LATD (for Numerous Infections and Polyphenolics/Lateral root-organ Defective) gene encodes a protein found in a clade of nitrate transporters within the large NRT1(PTR) family that also encodes transporters of dipeptides and tripeptides, dicarboxylates, auxin, and abscisic acid. Of the NRT1(PTR) members known to transport nitrate, most are low-affinity transporters. Here, we show that M. truncatula nip/latd mutants are more defective in their lateral root responses to nitrate provided at low (250 µm) concentrations than at higher (5 mm) concentrations; however, nitrate uptake experiments showed no discernible differences in uptake in the mutants. Heterologous expression experiments showed that MtNIP/LATD encodes a nitrate transporter: expression in Xenopus laevis oocytes conferred upon the oocytes the ability to take up nitrate from the medium with high affinity, and expression of MtNIP/LATD in an Arabidopsis chl1(nrt1.1) mutant rescued the chlorate susceptibility phenotype. X. laevis oocytes expressing mutant Mtnip-1 and Mtlatd were unable to take up nitrate from the medium, but oocytes expressing the less severe Mtnip-3 allele were proficient in nitrate transport. M. truncatula nip/latd mutants have pleiotropic defects in nodulation and root architecture. Expression of the Arabidopsis NRT1.1 gene in mutant Mtnip-1 roots partially rescued Mtnip-1 for root architecture defects but not for nodulation defects. This suggests that the spectrum of activities inherent in AtNRT1.1 is different from that possessed by MtNIP/LATD, but it could also reflect stability differences of each protein in M. truncatula. Collectively, the data show that MtNIP/LATD is a high-affinity nitrate transporter and suggest that it could have another function.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Genes de Plantas , Medicago truncatula/metabolismo , Nitratos/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Alelos , Animais , Proteínas de Transporte de Ânions/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Transporte Biológico , Cloratos/metabolismo , Cloratos/farmacologia , Teste de Complementação Genética , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/genética , Medicago truncatula/microbiologia , Transportadores de Nitrato , Nitratos/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Compostos de Potássio/farmacologia , Estabilidade Proteica , Sinorhizobium meliloti/crescimento & desenvolvimento , Simbiose , Espectrometria de Massas em Tandem , Transformação Genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...