Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839150

RESUMO

Recently, the n-type TiS2/organic hybrid superlattice (TOS) was found to have efficient thermoelectric (TE) properties above and near room temperature (RT). However, its TE performance and power generation at the temperature gradient below RT have not yet been reported. In this work, the TE performance and power generation of the TOS above and below RT were investigated. The electrical conductivity (σ) and Seebeck coefficient (S) were recorded as a function of temperature within the range 233-323 K. The generated power at temperature gradients above (at ΔT = 20 and 40 K) and below (at ΔT = -20 and -40 K) RT was measured. The recorded σ decreased by heating the TOS, while |S| increased. The resulting power factor recorded ~100 µW/mK2 at T = 233 K with a slight increase following heating. The charge carrier density and Hall mobility of the TOS showed opposite trends. The first factor significantly decreased after heating, while the second one increased. The TE-generated power of a single small module made of the TOS at ΔT = 20 and 40 K recorded 10 and 45 nW, respectively. Surprisingly, the generated power below RT is several times higher than that generated above RT. It reached 140 and 350 nW at ΔT = -20 and -40 K, respectively. These remarkable results indicate that TOS might be appropriate for generating TE power in cold environments below RT. Similar TE performances were recorded from both TOS films deposited on solid glass and flexible polymer, indicating TOS pertinence for flexible TE devices.

2.
Nanomaterials (Basel) ; 11(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34835556

RESUMO

This investigation aimed at evaluating the efficiency of micro and nanoclays as a low-cost material for the removal of crystal violet (CV) dye from an aqueous solution. The impacts of various factors (contact time, pH, adsorbent dosage, temperature, initial dye concentration) on the adsorption process have been taken into consideration. Six micro and nanoclay samples were obtained by treating clay materials collected from different locations in the Albaha region, Saudi Arabia. Out of the six tested micro and nanoclays materials, two (NCQ1 and NCQ3) were selected based on the highest adsorption efficiency for complete experimentation. The morphology and structure of the selected micro and nanoclay adsorbents were characterized by various techniques: SEM-EDX, FTIR, XRF, XRD, and ICP-MS. The XRF showed that the main oxides of both nanoclays were SiO2, Al2O3, Fe2O3, K2O, CaO, and MgO, and the rest were impurities. All the parameters affecting the adsorption of CV dye were optimized in a batch system, and the optimized working conditions were an equilibrium time of 120 min, a dose of 30 mg, a temperature of 25 °C, and an initial CV concentration of 400 mg/L. The equilibrium data were tested using nonlinear isotherm and kinetic models, which showed that the Freundlich isotherm and pseudo-second-order kinetics gave the best fit with the experimental data, indicating a physico-chemical interaction occurred between the CV dye and both selected micro and nanoclay surfaces. The maximum adsorption capacities of NCQ1 and NCQ3 adsorbents were 206.73 and 203.66 mg/g, respectively, at 25 °C. The thermodynamic factors revealed that the CV dye adsorption of both micro and nanoclays was spontaneous and showed an exothermic process. Therefore, the examined natural micro and nanoclays adsorbents are promising effective adsorbents for the elimination of CV dye from an aqueous environment.

3.
Sci Prog ; 104(4): 368504211050300, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34637366

RESUMO

Heterostructure Ag-AgVO3/Cu2O photocatalyst was prepared by the hydrothermal procedure. The prepared photocatalysts were characterized by different physico-chemical techniques. For Ag-AgVO3/Cu2O composites, AgVO3 shows the monoclinic phase whereas Ag and Cu2O show a cubic phase. SEM images of Ag-AgVO3/Cu2O composites illustrated that the surface of AgVO3 nanorods was covered by Ag and Cu2O nanoparticles. Ultra violet - visible diffuse reflectance spectra revealed that the calculated optical response of Ag-AgVO3/Cu2O composite was found to be 2.24 eV. Additionally, the composite catalyst demonstrated improved photo-efficiency for the decolorization of methylene blue dye compared to that of pristine AgVO3. The better performance of the composite sample can be ascribed to its high charge separation and inhibition in recombination of charges in Ag-AgVO3/Cu2O catalyst Finally, this heterostructure Ag-AgVO3/Cu2O catalyst demonstrated good stability which simply can be recycled a number of times with steadiness; thus, unwraps new possibilities for applications as innovative photocatalyst.

4.
Dalton Trans ; 50(5): 1599-1603, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33502425

RESUMO

The CXCR4 chemokine receptor is an important biomolecular target in cancer diagnostics and therapeutics. In a new multivalent approach, iron oxide nanoparticles were conjugated with multiple binding units of a low affinity azamacrocylic CXCR4 antagonist. The silica coated nanostructure has good suspension stability, a mode size of 72 nm and high affinity for CXCR4, showing >98% inhibition of anti-CXCR4 mAb binding in a receptor binding competition assay on Jurkat cells.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro/química , Receptores CXCR4/metabolismo , Humanos , Células Jurkat , Receptores CXCR4/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/química
5.
Polymers (Basel) ; 13(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467017

RESUMO

Conducting polymers have attracted significant attention due to their easy fabrication, morphology modification, and their electrical properties. Amongst them, polypyrrole (PPy) has attractive thermoelectric (TE) properties. Engineering of this polymer in one-dimensional (1D) nanostructured form is found to enhance its TE performance. This was achieved in the present work by using multi-walled carbon nanotubes (MWCNTs) as a core template to direct the self-assembly of PPy and also to further enhance its TE performance. The growth of PPy on the sidewalls of MWCNTs was performed in an acidic medium based oxidative in situ polymerization. Various concentrations of MWCNTs within the range 1.1-14.6 wt.% were used to form the MWCNTs/PPy nanocomposites in 1D core-shell structures. The morphology and microstructure results of the produced nanocomposite samples showed that this MWCNTs were successfully coated by thick and thin layers of PPy. At low concentrations of MWCNTs, thick layers of PPy are formed. While at high concentrations thin layers are coated. The formed 1D nanocomposites have enhanced TE performance, particularly those containing higher contents of MWCNTs. The power factor and figure of merit values for the formed 1D nanocomposites recorded around 0.77 µV/mK2 and 1 × 10-3 at room temperature (RT), respectively. This enhancement was attributed to the perfect coating and good interaction between PPy and MWCNT through π-π stacking between the polymer chains and these nanotubes. These results might be useful for developing future TE materials and devices.

6.
Mater Sci Eng C Mater Biol Appl ; 99: 1164-1173, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889650

RESUMO

Zinc oxide nanostructures (ZnO-NS) have shown to be of great value for several biological and biomedical applications. In particular, they have been used in bioimaging and delivery applications as well as inhibitors of microbial growth. In this work a new methodology for producing highly crystalline, size controlled ZnO-NS using a chemical microwave assisted synthetic route is described. A wide range of sizes and shapes of ZnO-NS could be controlled by varying the molar ratio of zinc nitrate to hexamethylenetetramine (HMT) from 3:20 to 30:20. The produced ZnO-NS systematically changed from 25 nm spherical nanoparticles to well-shaped micro sized hexagonal nanorods. Pronounced oxygen defects were also noticed, particularly at higher molar ratios. However, this is not the case with the lattice constant c, whose value is found to decrease by increasing this ratio. The produced ZnO-NS were tested as antimicrobial agent against Gram-negative (E. coli), Gram-positive (B. subtilis) bacteria and yeast (S. cerevisiae). Significant inhibition of these microbial strains was noticed even at low concentrations of ZnO-NS. The ZnO-NS with the molar ratio 3:20 was the most effective against the microbes tested. The results showed 80, 71 and 50% inhibition of E. coli, B. subtilis and S. cerevisiae, respectively. Using the "surfactant stress model" we describe the nanostructure formation of ZnO-NS. The antimicrobial activity of ZnO-NS correlated well with lattice constant c and particle size, where smaller particles with higher value of c displayed increase inhibitory activity. No clear correlation between the oxygen defects and bacterial inhibitions was observed. This highly crystalline, size tunable ZnO-NS could prove to be effective antimicrobial agents at low concentrations (e.g. 20 µg per 10 mL) and might be tested against other microorganisms.


Assuntos
Micro-Ondas , Nanoestruturas/química , Tamanho da Partícula , Óxido de Zinco/química , Cristalização , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanoestruturas/ultraestrutura , Imagem Óptica , Saccharomyces cerevisiae/efeitos dos fármacos , Análise Espectral Raman , Difração de Raios X , Óxido de Zinco/farmacologia
7.
Nanoscale ; 7(36): 14889-96, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26292197

RESUMO

The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no significant release of gallium-68 metal ions, validating our innovation to provide a novel simple method for labelling of iron oxide NRs with a radiometal in the absence of a chelating unit that can be used for high sensitivity liver imaging.


Assuntos
Compostos Férricos , Radioisótopos de Gálio , Marcação por Isótopo/métodos , Nanotubos/química , Tomografia por Emissão de Pósitrons/métodos , Dióxido de Silício , Animais , Feminino , Compostos Férricos/química , Compostos Férricos/farmacologia , Radioisótopos de Gálio/química , Radioisótopos de Gálio/farmacologia , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos com 1 Anel/farmacologia , Camundongos , Camundongos Nus , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Dióxido de Silício/química , Dióxido de Silício/farmacologia
8.
Faraday Discuss ; 175: 59-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25325197

RESUMO

The investigation of iron oxide-based positron emission tomography/magnetic resonance (PET/MR) multimodal imaging agents is an expanding field in which a variety of nanoparticle sizes, shapes, surface coatings and radioisotopes are open for exploration. This study develops iron oxide nanorods which are coated with various mixtures of poly(ethylene glycol) (PEG) and macrocyclic ligand (DO3A) via the formation of a silica layer on the surface. Gallium-68 radiolabelling of the nanorods was carried out in high radiochemical yields (RCY) and their stability in human serum was demonstrated for all constructs, even in the absence of the macrocyclic chelating unit. Further studies were carried out in an attempt to determine the appropriate amount of PEG coating to give optimal properties for future in vivo studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...