Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(6)2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37372424

RESUMO

Cardiomyopathy, a disorder of electrical or heart muscle function, represents a type of cardiac muscle failure and culminates in severe heart conditions. The prevalence of dilated cardiomyopathy (DCM) is higher than that of other types (hypertrophic cardiomyopathy and restrictive cardiomyopathy) and causes many deaths. Idiopathic dilated cardiomyopathy (IDCM) is a type of DCM with an unknown underlying cause. This study aims to analyze the gene network of IDCM patients to identify disease biomarkers. Data were first extracted from the Gene Expression Omnibus (GEO) dataset and normalized based on the RMA algorithm (Bioconductor package), and differentially expressed genes were identified. The gene network was mapped on the STRING website, and the data were transferred to Cytoscape software to determine the top 100 genes. In the following, several genes, including VEGFA, IGF1, APP, STAT1, CCND1, MYH10, and MYH11, were selected for clinical studies. Peripheral blood samples were taken from 14 identified IDCM patients and 14 controls. The RT-PCR results revealed no significant differences in the expression of the genes APP, MYH10, and MYH11 between the two groups. By contrast, the STAT1, IGF1, CCND1, and VEGFA genes were overexpressed in patients more than in controls. The highest expression was found for VEGFA, followed by CCND1 (p < 0.001). Overexpression of these genes may contribute to disease progression in patients with IDCM. However, more patients and genes need to be analyzed in order to achieve more robust results.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Humanos , Cardiomiopatia Dilatada/genética , Miocárdio , Cardiomiopatias/genética , Biomarcadores , Ciclina D1
2.
Genes (Basel) ; 13(5)2022 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-35627227

RESUMO

Prostate cancer (PCa) is a life-threatening heterogeneous malignancy of the urinary tract. Due to the incidence of prostate cancer and the crucial need to elucidate its molecular mechanisms, we searched for possible prognosis impactful genes in PCa using bioinformatics analysis. A script in R language was used for the identification of Differentially Expressed Genes (DEGs) from the GSE69223 dataset. The gene ontology (GO) of the DEGs and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. A protein-protein interaction (PPI) network was constructed using the STRING online database to identify hub genes. GEPIA and UALCAN databases were utilized for survival analysis and expression validation, and 990 DEGs (316 upregulated and 674 downregulated) were identified. The GO analysis was enriched mainly in the "collagen-containing extracellular matrix", and the KEGG pathway analysis was enriched mainly in "focal adhesion". The downregulation of neurotrophic receptor tyrosine kinase 1 (NTRK1) was associated with a poor prognosis of PCa and had a significant positive correlation with infiltrating levels of immune cells. We acquired a collection of pathways related to primary PCa, and our findings invite the further exploration of NTRK1 as a biomarker for early diagnosis and prognosis, and as a future potential molecular therapeutic target for PCa.


Assuntos
Redes Reguladoras de Genes , Neoplasias da Próstata , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/genética
3.
Pharmaceutics ; 14(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35335890

RESUMO

Prostate cancer (PC), the fifth leading cause of cancer-related mortality worldwide, is known as metastatic bone cancer when it spreads to the bone. Although there is still no effective treatment for advanced/metastatic PC, awareness of the molecular events that contribute to PC progression has opened up opportunities and raised hopes for the development of new treatment strategies. Androgen deprivation and androgen-receptor-targeting therapies are two gold standard treatments for metastatic PC. However, acquired resistance to these treatments is a crucial challenge. Due to the role of protein kinases (PKs) in the growth, proliferation, and metastases of prostatic tumors, combinatorial therapy by PK inhibitors may help pave the way for metastatic PC treatment. Additionally, PC is known to have epigenetic involvement. Thus, understanding epigenetic pathways can help adopt another combinatorial treatment strategy. In this study, we reviewed the PKs that promote PC to advanced stages. We also summarized some PK inhibitors that may be used to treat advanced PC and we discussed the importance of epigenetic control in this cancer. We hope the information presented in this article will contribute to finding an effective treatment for the management of advanced PC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA