Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int. microbiol ; 25(4): 709-721, Nov. 2022. ilus
Artigo em Inglês | IBECS | ID: ibc-216239

RESUMO

Pseudomonas aeruginosa is an important nosocomial pathogen with a capacity of resistance to multiple antibiotics and production of various extracellular and cell-associated virulence factors that clearly contribute to its pathogenicity. The objective of this study was to investigate the antibiotic susceptibility, virulence factors, and clonal relationship among clinical isolates of P. aeruginosa. Different clinical specimens from hospitalized patients were investigated for P. aeruginosa. Susceptibility of the isolates was evaluated by disc diffusion and broth microdilution methods, as described by the Clinical and Laboratory Standards Institute (CLSI) guideline. A total of 97 P. aeruginosa isolates were recovered from clinical specimens. The percentage of isolates resistant to antimicrobials was imipenem 25.77%, meropenem 15.46%, gentamicin 16.49%, tobramycin 15.46%, amikacin 16.49%, ciprofloxacin 20.61%, levofloxacin 24.74, ceftazidime 20.61%, piperacillin 15.46%, piperacillin/tazobactam 12.37%, colistin 9.27%, and polymyxin B 11.34%. Of isolates, 87.62% possessed β-hemolytic activity, 78.35% lecithinase, 59.8% elastase, 37.11% DNase, and 28.86% twitching motility. The frequency of virulence genes in isolates was lasB 82.47%, plcH 82.47%, exoA 58.76%, exoS 56.7%, and pilA 10.3%. ERIC-PCR typing clustered P. aeruginosa isolates to 19 common types (CT1-CT19) containing isolates from different hospitals and 43 single types (ST1-ST43). Colistin and polymyxin B were the most effective agents against the majority of P. aeruginosa isolates, emphasizing the effort to maintain their antibacterial activity as last-line therapy. The frequency of some virulence factors and genes was noticeably high, which is alarming. In addition, more effective strategies and surveillance are necessary to confine and prevent the inter-hospital and/or intra-hospital dissemination of P. aeruginosa between therapeutic centers.(AU)


Assuntos
Humanos , Virulência , Fatores de Virulência , Resistência Microbiana a Medicamentos , Pseudomonas aeruginosa , Microbiologia , Irã (Geográfico) , Pesquisa
2.
Int Microbiol ; 25(4): 709-721, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35697891

RESUMO

Pseudomonas aeruginosa is an important nosocomial pathogen with a capacity of resistance to multiple antibiotics and production of various extracellular and cell-associated virulence factors that clearly contribute to its pathogenicity. The objective of this study was to investigate the antibiotic susceptibility, virulence factors, and clonal relationship among clinical isolates of P. aeruginosa. Different clinical specimens from hospitalized patients were investigated for P. aeruginosa. Susceptibility of the isolates was evaluated by disc diffusion and broth microdilution methods, as described by the Clinical and Laboratory Standards Institute (CLSI) guideline. A total of 97 P. aeruginosa isolates were recovered from clinical specimens. The percentage of isolates resistant to antimicrobials was imipenem 25.77%, meropenem 15.46%, gentamicin 16.49%, tobramycin 15.46%, amikacin 16.49%, ciprofloxacin 20.61%, levofloxacin 24.74, ceftazidime 20.61%, piperacillin 15.46%, piperacillin/tazobactam 12.37%, colistin 9.27%, and polymyxin B 11.34%. Of isolates, 87.62% possessed ß-hemolytic activity, 78.35% lecithinase, 59.8% elastase, 37.11% DNase, and 28.86% twitching motility. The frequency of virulence genes in isolates was lasB 82.47%, plcH 82.47%, exoA 58.76%, exoS 56.7%, and pilA 10.3%. ERIC-PCR typing clustered P. aeruginosa isolates to 19 common types (CT1-CT19) containing isolates from different hospitals and 43 single types (ST1-ST43). Colistin and polymyxin B were the most effective agents against the majority of P. aeruginosa isolates, emphasizing the effort to maintain their antibacterial activity as last-line therapy. The frequency of some virulence factors and genes was noticeably high, which is alarming. In addition, more effective strategies and surveillance are necessary to confine and prevent the inter-hospital and/or intra-hospital dissemination of P. aeruginosa between therapeutic centers.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Amicacina/farmacologia , Amicacina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Colistina/farmacologia , Desoxirribonucleases/genética , Desoxirribonucleases/farmacologia , Desoxirribonucleases/uso terapêutico , Farmacorresistência Bacteriana/genética , Genótipo , Gentamicinas/farmacologia , Gentamicinas/uso terapêutico , Humanos , Imipenem/farmacologia , Imipenem/uso terapêutico , Irã (Geográfico) , Levofloxacino/farmacologia , Levofloxacino/uso terapêutico , Meropeném/farmacologia , Meropeném/uso terapêutico , Testes de Sensibilidade Microbiana , Elastase Pancreática/genética , Elastase Pancreática/farmacologia , Elastase Pancreática/uso terapêutico , Fosfolipases/genética , Fosfolipases/farmacologia , Fosfolipases/uso terapêutico , Piperacilina/farmacologia , Piperacilina/uso terapêutico , Combinação Piperacilina e Tazobactam/farmacologia , Combinação Piperacilina e Tazobactam/uso terapêutico , Polimixina B/farmacologia , Infecções por Pseudomonas/microbiologia , Tobramicina/farmacologia , Tobramicina/uso terapêutico , Fatores de Virulência/genética
3.
RSC Adv ; 12(25): 15950-15972, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35733686

RESUMO

This study reports the successful synthesis of a ZnS@GO@Pani polymeric nanocomposite (NC) via chemical polymerization. The product was used for simultaneous photocatalytic degradation-adsorption of malachite green (MG), a carcinogenic and widely used dye. The physicochemical properties of the prepared NC were characterized by various techniques. Morphological and XRD results confirmed the fine size of ZnS nanoparticles (NPs) with an approximate mean size of 5 nm, uniformly distributed within the polymeric matrix. For comparative purposes, photocatalytic dye degradation-adsorption of this nanohybrid was explored both in the dark and under natural light. It was observed that 0.1 g of the ternary NC in MG aqueous solution (20 ppm) leads to dye adsorption within 15 minutes with an efficiency of 70% under dark conditions. Also, MG removal efficiency of up to 90% was achieved in 15 minutes under natural light owing to integrated photocatalytic degradation-adsorption mechanisms. Adsorption isotherm studies were performed considering Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) models. The results showed that the Freundlich isotherm with R 2 = 0.988 is well consistent with the experimental data. Integrated photocatalytic degradation-adsorption kinetics were modeled with pseudo-first-order (PFO) and pseudo-second-order (PSO) models where PSO with R 2 = 0.999 best fitted the data, implying the predominant role of chemical adsorption in the dye removal process. Antibacterial tests revealed superior antibacterial activity of the prepared ZnS@GO@Pani NC against both Gram-negative and Gram-positive bacteria, demonstrating the remarkable synergistic effect of ZnS NPs embedded in the GO@Pani matrix. Accordingly, the prepared NC could be regarded as a promising candidate for wastewater treatment applications. The leaching and regeneration studies also confirmed that the prepared NC is a non-toxic dye removal agent with good reusability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA