Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photobiomodul Photomed Laser Surg ; 41(11): 622-631, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890115

RESUMO

Background: Oral mucositis (OM) is a common adverse effect of radiation to the head and neck. Recent research has shown that extra oral photobiomodulation (EO-PBM) reduces the severity of OM. However, appropriate EO-PBM therapy parameters for OM severity reduction have not been documented. Objective: This work aims to optimize EO-PBM radiation parameters for lowering the severity of radiation-induced OM in rats by establishing a photobiomodulation (PBM) treatment system based on light-emitting diode arrays with top-hat beam profile. Methods: The 36 rats are separated into 2 control groups and 4 groups receiving PBM treatment. The PBM groups are exposed to irradiance between 4 and 24 J/cm2 at 660 nm. The cheek pouch mucosa is removed after scarification for biochemical and histological examination. Student's t-test, and one-way analysis of variance (ANOVA) followed by Tukey's Multiple were applied to compare the statistical significance of differences between control groups and PBM treatment groups. Results: Statistical analysis reveals that PBM irradiation at 12 J/cm2 (200 sec) with a flatness of 0.8 and a diameter of 3 cm substantially decreased the level of inflammatory cytokines compared with the positive control group. Conclusions: Our results indicate that the designed treatment PBM system is capable of delivering the optical parameters necessary for therapeutic treatment.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Terapia com Luz de Baixa Intensidade , Estomatite , Ratos , Animais , Estomatite/etiologia , Estomatite/radioterapia , Terapia com Luz de Baixa Intensidade/métodos , Citocinas
2.
Opt Lett ; 45(17): 4895-4898, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870896

RESUMO

We demonstrate a technique to compress spectral information in dual-comb spectroscopy that relies on subsampling of the electrical interferogram. It enables us to reduce the data sample rate by arbitrary factors directly in the sampling process or in post-processing of existing data. A demonstration code is provided.

3.
Opt Lett ; 44(23): 5828-5831, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774790

RESUMO

The interband cascade laser (ICL) is an ideal candidate for low-power mid-infrared frequency comb spectroscopy. In this work, we demonstrate that its intracavity second-order optical nonlinearity induces a coherent up-conversion of the generated mid-infrared light to the near-infrared through second-harmonic and sum-frequency generation. At 1.8 µm, 10 mW of light at 3.6 µm convert into sub-nanowatt levels of optical power, spread across 30 nm of spectral coverage. The observed linear-to-nonlinear conversion efficiency exceeds ${3\;{\unicode{x00B5} {\rm W/W}}^2}$3µW/W2 in continuous wave operation. We use a dual-band ICL frequency comb source to characterize water vapor absorption in both spectral bands.

4.
Appl Opt ; 58(9): 2138-2145, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31044910

RESUMO

While whispering gallery mode resonators are well known for their low acceleration sensitivity, there has not been much published experimental research on the subject. We performed environmental sensitivity tests of a 2 µm semiconductor distributed feedback (DFB) laser, self-injection locked to a high-Q crystalline whispering gallery mode resonator. Measured acceleration sensitivity of the laser is below 5×10-11 g-1 in the 1-200 Hz frequency bandwidth and thermal sensitivity does not exceed 12 MHz/°C. The laser's frequency noise is below 50 Hz/Hz1/2 at 10 Hz, reaching 0.4 Hz/Hz1/2 at 400 kHz. The instantaneous linewidth of the laser is improved by nearly 4 orders of magnitude compared to the free-running DFB laser and is measured to be 50 Hz at 0.1 ms measurement time. The Allan deviation of the laser frequency is on the order of 10-9 from 1 to 1000 s. All these features make the laser attractive for metrology applications involving low-noise 2 µm seed lasers.

5.
Opt Lett ; 44(8): 2113-2116, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30985824

RESUMO

Two semiconductor optical frequency combs, consuming less than 1 W of electrical power, are used to demonstrate high-sensitivity mid-infrared dual-comb spectroscopy in the important 3-4 µm spectral region. The devices are 4 mm long by 4 µm wide, and each emits 8 mW of average optical power. The spectroscopic sensing performance is demonstrated by measurements of methane and hydrogen chloride with optical multi-pass cell sensitivity enhancement. The system provides a spectral coverage of 33 cm-1 (1 THz), 0.32 cm-1 (9.7 GHz) frequency sampling interval, and peak signal-to-noise ratio of ∼100 at 100 µs integration time. The monolithic design, low drive power, and direct generation of mid-infrared radiation are highly attractive for portable broadband spectroscopic instrumentation in future terrestrial and space applications.

6.
Sci Rep ; 8(1): 3322, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463807

RESUMO

Since their inception, optical frequency combs have transformed a broad range of technical and scientific disciplines, spanning time keeping to navigation. Recently, dual comb spectroscopy has emerged as an attractive alternative to traditional Fourier transform spectroscopy, since it offers higher measurement sensitivity in a fraction of the time. Midwave infrared (mid-IR) frequency combs are especially promising as an effective means for probing the strong fundamental absorption lines of numerous chemical and biological agents. Mid-IR combs have been realized via frequency down-conversion of a near-IR comb, by optical pumping of a micro-resonator, and beyond 7 µm by four-wave mixing in a quantum cascade laser. In this work, we demonstrate an electrically-driven frequency comb source that spans more than 1 THz of bandwidth centered near 3.6 µm. This is achieved by passively mode-locking an interband cascade laser (ICL) with gain and saturable absorber sections monolithically integrated on the same chip. The new source will significantly enhance the capabilities of mid-IR multi-heterodyne frequency comb spectroscopy systems.

7.
Opt Lett ; 41(23): 5559-5562, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906238

RESUMO

We report on the stabilization of a high-power distributed feedback (DFB) semiconductor laser operating at 2.05 µm wavelength, using a crystalline whispering gallery mode microresonator. The laser's frequency noise is measured to be below 100 Hz/Hz1/2 at Fourier frequencies ranging from 10 Hz to 1 MHz. The instantaneous linewidth of the laser is improved by four orders of magnitude compared with the free-running DFB laser, and is measured to be 15 Hz at 0.1 ms measurement time. The integral linewidth approaches 100 Hz. The stabilized DFB laser is integrated with a polarization maintaining output fiber and an integrated optical isolator.

8.
Nat Nanotechnol ; 10(11): 937-43, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26322944

RESUMO

Metasurfaces are planar structures that locally modify the polarization, phase and amplitude of light in reflection or transmission, thus enabling lithographically patterned flat optical components with functionalities controlled by design. Transmissive metasurfaces are especially important, as most optical systems used in practice operate in transmission. Several types of transmissive metasurface have been realized, but with either low transmission efficiencies or limited control over polarization and phase. Here, we show a metasurface platform based on high-contrast dielectric elliptical nanoposts that provides complete control of polarization and phase with subwavelength spatial resolution and an experimentally measured efficiency ranging from 72% to 97%, depending on the exact design. Such complete control enables the realization of most free-space transmissive optical elements such as lenses, phase plates, wave plates, polarizers, beamsplitters, as well as polarization-switchable phase holograms and arbitrary vector beam generators using the same metamaterial platform.

9.
Nat Commun ; 6: 7069, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25947118

RESUMO

Flat optical devices thinner than a wavelength promise to replace conventional free-space components for wavefront and polarization control. Transmissive flat lenses are particularly interesting for applications in imaging and on-chip optoelectronic integration. Several designs based on plasmonic metasurfaces, high-contrast transmitarrays and gratings have been recently implemented but have not provided a performance comparable to conventional curved lenses. Here we report polarization-insensitive, micron-thick, high-contrast transmitarray micro-lenses with focal spots as small as 0.57 λ. The measured focusing efficiency is up to 82%. A rigorous method for ultrathin lens design, and the trade-off between high efficiency and small spot size (or large numerical aperture) are discussed. The micro-lenses, composed of silicon nano-posts on glass, are fabricated in one lithographic step that could be performed with high-throughput photo or nanoimprint lithography, thus enabling widespread adoption.

10.
Opt Express ; 23(26): 33310-7, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26831996

RESUMO

Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 µm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M2=1.02.

11.
Phys Rev Lett ; 111(21): 213902, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24313490

RESUMO

Synchronization in oscillatory systems is a frequent natural phenomenon and is becoming an important concept in modern physics. Nanomechanical resonators are ideal systems for studying synchronization due to their controllable oscillation properties and engineerable nonlinearities. Here we demonstrate synchronization of two nanomechanical oscillators via a photonic resonator, enabling optomechanical synchronization between mechanically isolated nanomechanical resonators. Optical backaction gives rise to both reactive and dissipative coupling of the mechanical resonators, leading to coherent oscillation and mutual locking of resonators with dynamics beyond the widely accepted phase oscillator (Kuramoto) model. In addition to the phase difference between the oscillators, also their amplitudes are coupled, resulting in the emergence of sidebands around the synchronized carrier signal.

12.
Opt Express ; 21(1): 1317-23, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23389025

RESUMO

We demonstrate index-coupled distributed-feedback diode lasers at 2.65 µm that are capable of tuning across strong absorption lines of HDO and other isotopologues of H2O. The lasers employ InGaAsSb/AlInGaAsSb multi-quantum-well structures grown by molecular beam epitaxy on GaSb, and single-mode emission is generated using laterally coupled second-order Bragg gratings etched alongside narrow ridge waveguides. We verify near-critical coupling of the gratings by analyzing the modal characteristics of lasers of different length. With an emission facet anti-reflection coating, 2-mm-long lasers exhibit a typical current threshold of 150 mA at 20 °C and are capable of emitting more than 25 mW in a single longitudinal mode, which is significantly higher than the output power reported for loss-coupled distributed-feedback lasers operating at similar wavelengths.

13.
Nat Nanotechnol ; 6(11): 726-32, 2011 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22020123

RESUMO

The ability to control mechanical motion with optical forces has made it possible to cool mechanical resonators to their quantum ground states. The same techniques can also be used to amplify rather than reduce the mechanical motion of such systems. Here, we study nanomechanical resonators that are slightly buckled and therefore have two stable configurations, denoted 'buckled up' and 'buckled down', when they are at rest. The motion of these resonators can be described by a double-well potential with a large central energy barrier between the two stable configurations. We demonstrate the high-amplitude operation of a buckled resonator coupled to an optical cavity by using a highly efficient process to generate enough phonons in the resonator to overcome the energy barrier in the double-well potential. This allows us to observe the first evidence for nanomechanical slow-down and a zero-frequency singularity predicted by theorists. We also demonstrate a non-volatile mechanical memory element in which bits are written and reset by using optomechanical backaction to direct the relaxation of a resonator in the high-amplitude regime to a specific stable configuration.


Assuntos
Sistemas Microeletromecânicos/instrumentação , Nanoestruturas/química , Nanotecnologia/instrumentação , Dinâmica não Linear , Fônons , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Movimento (Física) , Dispositivos Ópticos , Transdutores
14.
Case Rep Pulmonol ; 2011: 485952, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22937426

RESUMO

A 60-year-old man presented with pneumococcal meningitis which did not respond to the ceftriaxone therapy, in spite of in-vitro susceptibility (minimal inhibitory concentration of 0.016 µg/dLit) of the isolated organism to this antibacterial agent, although ceftriaxone is still the drug of choice for such pneumococcal meningitis. Review of published articles revealed no report of clinical resistance in organisms which were susceptible to the same antimicrobial agent in vitro. This alarming emergence of isolates with in vivo resistance should be considered and even could lead to a shift in the empirical antibiotic therapy for pneumococcal infections.

15.
Opt Lett ; 34(19): 2979-81, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19794788

RESUMO

We demonstrate the reduction of semiconductor laser phase noise by using an electrical feed-forward scheme. We have carried out proof-of-concept experiments on a commercially available distributed-feedback laser emitting at the 1550 nm communication band. The preliminary results show more than 20 times reduction in the phase-noise power spectrum. The feed-forward scheme does not have the limited bandwidth, stability, and speed issues that are common in feedback systems. Moreover, in the absence of electronic noise, feed-forward can completely cancel the close-in phase noise. In this scheme, the ultimate achievable phase noise will be limited by the electronics noise. Using the proposed feed-forward approach, the linewidth of semiconductor lasers can be reduced by 3-4 orders of magnitude in a monolithic approach using today's low-noise scaled transistors with terahertz gain-bandwidth product.

16.
Opt Express ; 16(22): 17342-7, 2008 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-18958017

RESUMO

In order to reduce the optical absorption loss, an array of double-heterostructure photonic crystal microcavity lasers was fabricated in which much of the photonic crystal mirror region was disordered by quantum well intermixing. In characterizing these devices, we obtained more than a factor of two increase in slope efficiencies and more than 20% reduction in threshold pump powers compared to devices that were not intermixed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...