Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(7): 2997-3010, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38414832

RESUMO

The ability to directly monitor the states of electrons in modern field-effect transistors (FETs) could transform our understanding of the physics and improve the function of related devices. In particular, phosphorene allotropes present a fertile landscape for the development of high-performance FETs. Using density functional theory-based methods, we have systematically investigated the influence of electrostatic gating on the structures, stabilities, and fundamental electronic properties of pristine and carbon-doped monolayer (bilayer) phosphorene allotropes. The remarkable flexibility of phosphorene allotropes, arising from intra- and interlayer van der Waals interactions, causes a good resilience up to equivalent gate potential of two electrons per unit cell. The resilience depends on the stacking details in such a way that rotated bilayers show considerably higher thermodynamical stability than the unrotated ones, even at a high gate potential. In addition, a semiconductor to metal phase transition is observed in some of the rotated and carbon-doped structures with increased electronic transport relative to graphene in the context of real space Green's function formalism.

2.
Commun Chem ; 6(1): 94, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198430

RESUMO

Metal complexes are extensively explored as catalysts for oxidation reactions; molecular-based mechanisms are usually proposed for such reactions. However, the roles of the decomposition products of these materials in the catalytic process have yet to be considered for these reactions. Herein, the cyclohexene oxidation in the presence of manganese(III) 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine chloride tetrakis(methochloride) (1) in a heterogeneous system via loading the complex on an SBA-15 substrate is performed as a study case. A molecular-based mechanism is usually suggested for such a metal complex. Herein, 1 was selected and investigated under the oxidation reaction by iodosylbenzene or (diacetoxyiodo)benzene (PhI(OAc)2). In addition to 1, at least one of the decomposition products of 1 formed during the oxidation reaction could be considered a candidate to catalyze the reaction. First-principles calculations show that Mn dissolution is energetically feasible in the presence of iodosylbenzene and trace amounts of water.

3.
ACS Appl Mater Interfaces ; 13(17): 19927-19937, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33886278

RESUMO

The design of molecular oxygen-evolution reaction (OER) catalysts requires fundamental mechanistic studies on their widely unknown mechanisms of action. To this end, copper complexes keep attracting interest as good catalysts for the OER, and metal complexes with TMC (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) stand out as active OER catalysts. A mononuclear copper complex, [Cu(TMC)(H2O)](NO3)2 (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), combined both key features and was previously reported to be one of the most active copper-complex-based catalysts for electrocatalytic OER in neutral aqueous solutions. However, the functionalities and mechanisms of the catalyst are still not fully understood and need to be clarified with advanced analytical studies to enable further informed molecular catalyst design on a larger scale. Herein, the role of nanosized Cu oxide particles, ions, or clusters in the electrochemical OER with a mononuclear copper(II) complex with TMC was investigated by operando methods, including in situ vis-spectroelectrochemistry, in situ electrochemical liquid transmission electron microscopy (EC-LTEM), and extended X-ray absorption fine structure (EXAFS) analysis. These combined experiments showed that Cu oxide-based nanoparticles, rather than a molecular structure, are formed at a significantly lower potential than required for OER and are candidates for being the true OER catalysts. Our results indicate that for the OER in the presence of a homogeneous metal complex-based (pre)catalyst, careful analyses and new in situ protocols for ruling out the participation of metal oxides or clusters are critical for catalyst development. This approach could be a roadmap for progress in the field of sustainable catalysis via informed molecular catalyst design. Our combined approach of in situ TEM monitoring and a wide range of complementary spectroscopic techniques will open up new perspectives to track the transformation pathways and true active species for a wide range of molecular catalysts.

4.
Chemistry ; 27(4): 1330-1336, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32716557

RESUMO

All studies on oxygen-evolution reaction by Mn oxides in the presence of cerium(IV) ammonium nitrate (CAN) have been so far carried out by synthesizing Mn oxides in the first step. And then, followed by the investigation of the Mn oxides in the presence of oxidants for oxygen-evolution reaction (OER). This paper presents a case study of a new and promising strategy for in situ catalyst synthesis by the adding MnII to either CAN or KMnO4 /CAN solution, resulting in the formation of Mn-based catalysts for OER. The catalysts were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. Both compounds contained nano-sized particles that catalyzed OER in the presence of CAN. The turnover frequencies for both catalysts were 0.02 (mmol O 2 /molMn ⋅s).

5.
Sci Rep ; 10(1): 19378, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168852

RESUMO

Alcohol to aldehyde conversion is a critical reaction in the industry. Herein, a new electrochemical method is introduced that converts 1 mmol of alcohols to aldehydes and ketones in the presence of N-hydroxyphthalimide (NHPI, 20 mol%) as a mediator; this conversion is achieved after 8.5 h at room temperature using a piece of Ni foam (1.0 cm2) and without adding an extra-base or a need for high temperature. Using this method, 10 mmol (1.08 g) of benzyl alcohol was also successfully oxidized to benzaldehyde (91%) without any by-products. This method was also used to oxidize other alcohols with high yield and selectivity. In the absence of a mediator, the surface of the nickel foam provided oxidation products at the lower yield. After the reaction was complete, nickel foam (anode) was characterized by a combination of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and spectroelectrochemistry, which pointed to the formation of nickel oxide on the surface of the electrode. On the other hand, using other electrodes such as Pt, Cu, Fe, and graphite resulted in a low yield for the alcohol to aldehyde conversion.

6.
Inorg Chem ; 59(20): 15335-15342, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33021376

RESUMO

Water splitting is a promising reaction for storing sustainable but intermittent energies. In water splitting, water oxidation is a bottleneck, and thus different catalysts have been synthesized for water oxidation. Metal-organic frameworks (MOFs) are among the highly efficient catalysts for water oxidation, and so far, MOF-based catalysts have been divided into two categories: MOF-derived catalysts and direct MOF catalysts. In particular, a nickel/cobalt MOF is reported to be one of the best direct catalysts for water oxidation. For the first-row transition MOF structures in general, a hypothesis is that the harsh conditions of OER could cause the decomposition of organic ligands and the formation of water-oxidizing oxide-based structures. By electrochemical methods, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and X-ray absorption spectroscopy, a nickel/cobalt MOF known to be a highly efficient catalyst for water oxidation is shown to form Ni/Co oxide, making it a candidate catalyst for oxygen evolution. MOFs are interesting precatalysts for metal oxide water-oxidizing catalysts, but control experiments are necessary for determining whether a certain MOF or other MOFs are true catalysts for OER. Thus, finding a true and direct MOF electrocatalyst for OER is a challenge.

7.
Heliyon ; 6(9): e04911, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32984608

RESUMO

Recently, natural dyes have a widening scope in various traditional and advanced applications due to their eco-friendly environment. However, improved dyeability of natural dyes still remains a challenging task. This research was aimed to achieve multi-objective wool with improved dyeability using bio-nano-mordant composed of m-Trans-glutaminase, m-TGase, and bentonite nanoclay. Wool fiber was treated through sonochemical method using different concentrations of m-TGase and bentonite. The surface morphology of wool fabric samples was examined by field emission-scanning electron microscopy (FESEM), and Fourier transform Infrared Radiation (FTIR). Further, wool samples treated at different conditions were applied to madder for dyeability examination. The optimum conditions of color coordinates, color strength, K/S, and washing fastness of madder on treated wool fabric with m-TGase and bentonite, were also examined. The results revealed well-made interactions among m-TGase, bentonite, and wool fibers. In addition, surface morphology was strongly influenced by variations in enzyme concentrations so that extra addition of m-TGase lead to clear damage scales or less cuticle surface in SEM images. Moreover, the results showed that the value of K/S for treated wool samples was better than untreated samples. Indeed, amongst all, 5% concentrations of bio-nano-mordant for m-TGase and bentonite have the most constructive K/S values. Similarly, results of ΔE and antibacterial investigations also confirmed its superiority.

8.
Sci Rep ; 10(1): 8757, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472099

RESUMO

In this study, we investigate the effect of K2FeO4, as a new and soluble Fe salt at alkaline conditions, on oxygen-evolution reaction (OER) of Ni oxide. Both oxidation and reduction peaks for Ni in the presence and absence of Fe are linearly changed by (scan rate)1/2. Immediately after the interaction of [FeO4]2- with the surface of the electrode, a significant increase in OER is observed. This could be indicative of the fact that either the [FeO4]2- on the surface of Ni oxide is directly involved in OER, or, it is important to activate Ni oxide toward OER. Due to the change in the Ni(II)/(III) peak, it is hypothesized that Fe impurity in KOH or electrochemical cell has different effects at the potential range. At low potential, [FeO4]2- is reduced on the surface of the electrode, and thus, is significantly adsorbed on the electrode. Finally, oxygen-evolution measurements of K2FeO4 and Ni2O3 are investigated under chemical conditions. K2FeO4 is not stable in the presence of Ni(II) oxide, and OER is observed in a KOH solution (pH ≈ 13).

9.
Dalton Trans ; 49(17): 5597-5605, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32282002

RESUMO

Herein, we report the synthesis, characterization, crystal structure, density functional theory calculations, and water-oxidizing activity of a pivalate Mn-Ca cluster. All of the manganese atoms in the cluster are Mn(iv) ions and have a distorted MnO6 octahedral geometry. Three Mn(iv) ions together with a Ca(ii) ion and four-oxido groups form a cubic Mn3CaO4 unit which is similar to the Mn3CaO4 cluster in the water-oxidizing complex of Photosystem II. Using scanning electron microscopy, transmission electron microscopy, energy dispersive spectrometry, extended X-ray absorption spectroscopy, chronoamperometry, and electrochemical methods, a conversion into nano-sized Mn-oxide is observed for the cluster in the water-oxidation reaction.


Assuntos
Biocatálise , Materiais Biomiméticos/química , Cálcio/química , Manganês/química , Complexo de Proteína do Fotossistema II/metabolismo , Água/química , Modelos Moleculares , Conformação Molecular , Oxirredução
10.
Chem Commun (Camb) ; 55(96): 14530-14533, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31738364

RESUMO

An aqueous solution approach, integrating atomic layer deposition and chemical vapor deposition, is proposed to grow a high-quality Sb2S3 thin film. The Sb2S3 thin film is uniform and dense with a bandgap of 1.78 eV. The photocurrent density of the Sb2S3 sensitized TiO2 array electrode is 40 µA cm-2, which is nearly 25 and 93 times than that of TiO2 and Sb2S3 photoanodes, respectively.

11.
ACS Appl Mater Interfaces ; 11(36): 33102-33108, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31385686

RESUMO

p-Type compounds Cu2BaSnS4 (CBTS) are extremely attractive materials for photocathode applications because of their suitable conduction and valence bands, earth-abundant sources, and environmental friendly nature. Herein, an inexpensive and reproducible aqueous solution approach has been developed to synthesize CBTS films with single-crystalline grains as large as micron scale. Because of the large crystalline grains, the as-grown CBTS films show excellent carrier mobility (1.29 cm2/V·s). Greater than 4 mA·cm-2 photocurrent density has been obtained in a neutral solution for bare Mo/CBTS film photocathodes under 100 mW·cm-2 illumination at 0 V versus reversible hydrogen electrode.

12.
Sci Rep ; 9(1): 11499, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395911

RESUMO

Ferritin is a protein (ca. 12 nm) with a central pocket of 6 nm diameter, and hydrated iron oxide stored in this central cavity of this protein. The protein shell has a complicated structure with 24 subunits. Transmission electron microscopy images of ferritin showed nanosized iron oxides (ca. 4-6 nm) in the protein structure. In high-resolution transmission electron microscopy images of the iron core, d-spacings of 2.5-2.6 Å were observed, which is corresponded to d-spacings of ferrihydrite crystal structure. Our experiments showed that at pH 11, the modified electrode by this biomolecule is active for water oxidation (turnover frequency: 0.001 s-1 at 1.7 V). Using affected by bacteria, we showed that Fe ions in the structure of ferritin are critical for water oxidation.

13.
Dalton Trans ; 48(32): 12147-12158, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31328758

RESUMO

Phthalocyanines are a promising class of ligands for manganese because of their high binding affinity. This effect is suggested to be an important factor because phthalocyanines tightly bind manganese and stabilize it under moderate conditions. The strong donor power of phthalocyanine is also suggested as a critical factor to stabilize high-valent manganese phthalocyanine. Herein, a manganese(ii) phthalocyanine, which is stable under moderate conditions, was investigated under harsh electrochemical water oxidation. By scanning electron microscopy, transmission electron microscopy, energy dispersive spectrometry, X-ray diffraction, extended X-ray absorption fine structure analysis, X-ray absorption near edge structure analysis, chronoamperometry, magnetic measurements, Fourier-transform infrared spectroscopy, and electrochemical methods, it is shown that manganese phthalocyanine, a known molecular complex showing good stability under moderate conditions, could not withstand water oxidation catalysis and ultimately is altered to form catalytic oxide particles. Such nanosized Mn oxides are the true catalyst for water oxidation. Besides, we try to go a step forward to find an answer as to how Mn oxides form on the surface of the electrode.

14.
Sci Rep ; 9(1): 7749, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123332

RESUMO

Recently, it has been great efforts to synthesize an efficient water-oxidizing catalyst. However, to find the true catalyst in the harsh conditions of the water-oxidation reaction is an open area in science. Herein, we showed that corrosion of some simple manganese salts, MnCO3, MnWO4, Mn3(PO4)2 · 3H2O, and Mn(VO3)2 · xH2O, under the water-electrolysis conditions at pH = 6.3, gives an amorphous manganese oxide. This conversion was studied with X-ray absorption spectroscopy (XAS), as well as, scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDXS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), spectroelectrochemistry and electrochemistry methods. When using as a water-oxidizing catalyst, such results are important to display that long-term water oxidation can change the nature of the manganese salts.

15.
Sci Rep ; 9(1): 3734, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842566

RESUMO

Herein, we report an iron/nickel/zinc mixed oxide as a catalyst for the electrochemical water oxidation. This catalyst was synthesized by a straightforward method for the synthesis of an iron/nickel/zinc mixed oxide through the calcination of a Fe/Ni/Zn organometallic compound. The calcined product contains Fe and Ni as crucial ions for water oxidation, accompanied by the presence of Zn ions. The removal of Zn ions from the mixed oxide provides more active sites on the surface of the catalyst. The composition of the compound was characterized by some common methods and found to be an efficient water-oxidizing catalyst. The catalyst on FTO at pH = 13 yields a current density of 12 mA/cm2 at 1.2 V (vs. Ag│AgCl). After 5 hours at 1.1 V, the electrode not only shows no decrease in performance, but also shows an increase from 4 to 7 mA/cm2 in the water oxidation activity. Tafel plot, for the electrode at pH = 13 in KOH solution (0.1 M) showed linearity for the graph of lg j vs. V with both relatively low (220.4 mV per decade) and high overpotentials (903.7 mV per decade).

16.
Nanoscale Adv ; 1(2): 686-695, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36132275

RESUMO

Performing water splitting for H2 production is an interesting method to store different energies. For water splitting, an efficient and stable water-oxidizing catalyst is important. Ni-Fe (hydr)oxides are among the best catalysts for water oxidation in alkaline electrolytes. An Fe amount higher than 50% in Ni-Fe (hydr)oxides increases the overpotential for water oxidation. Thus, Ni-Fe (hydr)oxides with a high ratio of Fe to Ni have rarely been focused on for water oxidation. Herein, we report water oxidation using nanosized (Ni1-x Zn x )Fe2O4. The catalyst was characterized via some methods and tested at pH values of 3, 7 and 11 in phosphate buffer. Nanosized (Ni1-x Zn x )Fe2O4 is a good catalyst for water oxidation only under alkaline conditions. In the next step, amperometry studies showed current densities of 3.50 mA cm-2 and 11.50 mA cm-2 at 1.25 V in 0.10 M and 1.0 M KOH solution, respectively. The amperometric measurements indicated high catalyst stability in both 0.10 M and 1.0 M KOH. Tafel plots were obtained in KOH solution at concentrations of both 0.10 M and 1.0 M. At pH = 13 in KOH solution (0.10 M), linearity of lg(j) vs. potential was shown, with two slopes relating to both relatively low (170.9 mV per decade) and high overpotentials (484.2 mV per decade). In 1.0 M KOH solution, the Tafel plot showed linearity of lg(j) vs. potential, with two slopes relating to both relatively low (192.5 mV per decade) and high overpotentials (545.7 mV per decade). After water oxidation, no significant change was observed in the catalyst.

17.
Dalton Trans ; 48(2): 547-557, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30525137

RESUMO

In the present study, the water-oxidizing activity of nickel(ii) phthalocyanine-tetrasulfonate tetrasodium (1), which is a stable Ni(ii) complex under moderate conditions, was investigated. The role of Ni oxide in water oxidation as a true catalyst was investigated. The electrodes after water oxidation by both the complex and Ni salt were analyzed and a relation was proposed between the decomposition of the Ni complex and water oxidation. On the surface of the electrode, there are some areas without any detectable nanoparticles; thus, the detection of such Ni oxides on the surface of the electrode is not easy in the first seconds of the reaction, even using some of the usual methods such as Scanning Electron Microscopy or electrochemical analysis. Such experiments indicated that a precise analysis is necessary to reject the role of nanoparticles in the presence of Ni phthalocyanine under water oxidation. The findings also showed that under water-oxidation conditions and in the presence of the complex, Ni oxide is a good candidate for a true catalyst.

18.
Photosynth Res ; 136(2): 257-267, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29589334

RESUMO

Nature uses a Mn oxide-based catalyst for water oxidation in plants, algae, and cyanobacteria. Mn oxides are among major candidates to be used as water-oxidizing catalysts. Herein, we used two straightforward and promising methods to form Escherichia coli bacteria/Mn oxide compounds. In one of the methods, the bacteria template was intact after the reaction. The catalysts were characterized by X-ray photoelectron spectroscopy, visible spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, diffuse reflectance infrared Fourier transform spectroscopy, Raman spectroscopy, and X-ray diffraction spectrometry. Electrochemical properties of the catalysts were studied, and attributed redox potentials were assigned. The water oxidation of the compounds was examined under electrochemical condition. Linear sweep voltammetry showed that the onsets of water oxidation in our experimental condition for bacteria and Escherichia coli bacteria/Mn oxide were 1.68 and 1.56 V versus the normal hydrogen electrode (NHE), respectively. Thus, the presence of Mn oxide in the catalyst significantly decreased (~ 120 mV) the overpotential needed for water oxidation.


Assuntos
Biotecnologia/métodos , Escherichia coli/metabolismo , Compostos de Manganês/química , Óxidos/química , Água/metabolismo , Catálise , Concentração de Íons de Hidrogênio , Compostos de Manganês/metabolismo , Microscopia Eletrônica de Varredura , Oxirredução , Óxidos/metabolismo , Espectroscopia Fotoeletrônica , Permanganato de Potássio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Água/química , Difração de Raios X
19.
Mikrochim Acta ; 185(1): 67, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29594455

RESUMO

The authors report that carbon nitride quantum dots (CN QDs) exert a strong enhancing effect on the Cu(II)/H2O2 chemiluminescent system. Chemiluminescence (CL) intensity is enhanced by CN QDs by a factor of ~75, while other carbon nanomaterials have a much weaker effect. The possible mechanism of the effect was evaluated by recording fluorescence and CL spectra and by examining the effect of various radical scavengers. Emitting species was found to be excited-state CN QDs that produce green CL peaking at 515 nm. The new CL system was applied to the sensitive detection of H2O2 and glucose (via glucose oxidase-catalyzed formation of H2O2) with detection limits (3σ) of 10 nM for H2O2 and 100 nM for glucose. The probe was employed for glucose determination in human plasma samples with satisfactory results. Graphical abstract The effect of carbon nitride quantum dots (CN QDs) on Cu(II)-H2O2 chemiluminescence reaction was studied and the new CL system was applied for sensitive detection of glucose based on the glucose oxidase (GOx)-catalyzed formation of H2O2.

20.
Dalton Trans ; 45(6): 2618-23, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26733268

RESUMO

Herein, the role of iron oxide in the electrochemical water oxidation of an iron cyclen (cyclen = 1,4,7,10-tetraazacyclododecane) is considered using scanning electron microscopy, energy-dispersive spectrometry, X-ray diffraction, nuclear magnetic resonance spectroscopy, chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA