Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 48(6): 780-792.e4, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30853441

RESUMO

FAT4 mutations lead to several human diseases that disrupt the normal development of the kidney. However, the underlying mechanism remains elusive. In studying the duplex kidney phenotypes observed upon deletion of Fat4 in mice, we have uncovered an interaction between the atypical cadherin FAT4 and RET, a tyrosine kinase receptor essential for kidney development. Analysis of kidney development in Fat4-/- kidneys revealed abnormal ureteric budding and excessive RET signaling. Removal of one copy of the RET ligand Gdnf rescues Fat4-/- kidney development, supporting the proposal that loss of Fat4 hyperactivates RET signaling. Conditional knockout analyses revealed a non-autonomous role for Fat4 in regulating RET signaling. Mechanistically, we found that FAT4 interacts with RET through extracellular cadherin repeats. Importantly, expression of FAT4 perturbs the assembly of the RET-GFRA1-GDNF complex, reducing RET signaling. Thus, FAT4 interacts with RET to fine-tune RET signaling, establishing a juxtacrine mechanism controlling kidney development.


Assuntos
Caderinas/metabolismo , Rim/embriologia , Rim/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais , Animais , Caderinas/química , Caderinas/deficiência , Deleção de Genes , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Rim/anormalidades , Camundongos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Regulação para Cima
2.
Development ; 142(16): 2781-91, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26209645

RESUMO

Mammalian brain development requires coordination between neural precursor proliferation, differentiation and cellular organization to create the intricate neuronal networks of the adult brain. Here, we examined the role of the atypical cadherins Fat1 and Fat4 in this process. We show that mutation of Fat1 in mouse embryos causes defects in cranial neural tube closure, accompanied by an increase in the proliferation of cortical precursors and altered apical junctions, with perturbations in apical constriction and actin accumulation. Similarly, knockdown of Fat1 in cortical precursors by in utero electroporation leads to overproliferation of radial glial precursors. Fat1 interacts genetically with the related cadherin Fat4 to regulate these processes. Proteomic analysis reveals that Fat1 and Fat4 bind different sets of actin-regulating and junctional proteins. In vitro data suggest that Fat1 and Fat4 form cis-heterodimers, providing a mechanism for bringing together their diverse interactors. We propose a model in which Fat1 and Fat4 binding coordinates distinct pathways at apical junctions to regulate neural progenitor proliferation, neural tube closure and apical constriction.


Assuntos
Encéfalo/embriologia , Caderinas/metabolismo , Proliferação de Células/fisiologia , Células-Tronco Neurais/fisiologia , Tubo Neural/embriologia , Animais , Western Blotting , Caderinas/genética , Técnicas de Silenciamento de Genes , Camundongos , Microscopia de Fluorescência , Tubo Neural/metabolismo , beta-Galactosidase
3.
Development ; 142(15): 2564-73, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26116661

RESUMO

Regulation of the balance between progenitor self-renewal and differentiation is crucial to development. In the mammalian kidney, reciprocal signalling between three lineages (stromal, mesenchymal and ureteric) ensures correct nephron progenitor self-renewal and differentiation. Loss of either the atypical cadherin FAT4 or its ligand Dachsous 1 (DCHS1) results in expansion of the mesenchymal nephron progenitor pool, called the condensing mesenchyme (CM). This has been proposed to be due to misregulation of the Hippo kinase pathway transcriptional co-activator YAP. Here, we use tissue-specific deletions to prove that FAT4 acts non-autonomously in the renal stroma to control nephron progenitors. We show that loss of Yap from the CM in Fat4-null mice does not reduce the expanded CM, indicating that FAT4 regulates the CM independently of YAP. Analysis of Six2(-/-);Fat4(-/-) double mutants demonstrates that excess progenitors in Fat4 mutants are dependent on Six2, a crucial regulator of nephron progenitor self-renewal. Electron microscopy reveals that cell organisation is disrupted in Fat4 mutants. Gene expression analysis demonstrates that the expression of Notch and FGF pathway components are altered in Fat4 mutants. Finally, we show that Dchs1, and its paralogue Dchs2, function in a partially redundant fashion to regulate the number of nephron progenitors. Our data support a model in which FAT4 in the stroma binds to DCHS1/2 in the mouse CM to restrict progenitor self-renewal.


Assuntos
Caderinas/metabolismo , Diferenciação Celular/fisiologia , Néfrons/ultraestrutura , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Análise de Variância , Animais , Proteínas de Ciclo Celular , Linhagem da Célula/fisiologia , Imunofluorescência , Perfilação da Expressão Gênica , Via de Sinalização Hippo , Immunoblotting , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Análise de Sequência de RNA , Proteínas de Sinalização YAP
4.
PLoS Genet ; 9(3): e1003380, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555292

RESUMO

Yap is a transcriptional co-activator that regulates cell proliferation and apoptosis downstream of the Hippo kinase pathway. We investigated Yap function during mouse kidney development using a conditional knockout strategy that specifically inactivated Yap within the nephrogenic lineage. We found that Yap is essential for nephron induction and morphogenesis, surprisingly, in a manner independent of regulation of cell proliferation and apoptosis. We used microarray analysis to identify a suite of novel Yap-dependent genes that function during nephron formation and have been implicated in morphogenesis. Previous in vitro studies have indicated that Yap can respond to mechanical stresses in cultured cells downstream of the small GTPases RhoA. We find that tissue-specific inactivation of the Rho GTPase Cdc42 causes a severe defect in nephrogenesis that strikingly phenocopies loss of Yap. Ablation of Cdc42 decreases nuclear localization of Yap, leading to a reduction of Yap-dependent gene expression. We propose that Yap responds to Cdc42-dependent signals in nephron progenitor cells to activate a genetic program required to shape the functioning nephron.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proliferação de Células , Rim , Morfogênese , Fosfoproteínas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Proteínas de Ciclo Celular , Rim/crescimento & desenvolvimento , Rim/metabolismo , Camundongos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transdução de Sinais , Proteínas de Sinalização YAP , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
5.
J Comp Physiol B ; 181(2): 219-38, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20976602

RESUMO

In water of varying ion content, the gills and kidney of fishes contribute significantly to the maintenance of salt and water balance. However, little is known about the molecular architecture of the tight junction (TJ) complex and the regulation of paracellular permeability characteristics in these tissues. In the current studies, puffer fish (Tetraodon biocellatus) were acclimated to freshwater (FW), seawater (SW) or ion-poor freshwater (IPW) conditions. Following acclimation, alterations in systemic endpoints of hydromineral status were examined in conjunction with changes in gill and kidney epithelia morphology/morphometrics, as well as claudin TJ protein mRNA abundance. T. biocellatus were able to maintain endpoints of hydromineral status within relatively tight limits across the broad range of water ion content examined. Both gill and kidney tissue exhibited substantial alterations in morphology as well as claudin TJ protein mRNA abundance. These responses were particularly pronounced when comparing fish acclimated to SW versus those acclimated to IPW. TEM observations of IPW-acclimated fish gills revealed the presence of cells that exhibited the typical characteristics of gill mitochondria-rich cells (e.g. voluminous, Na(+)-K(+)-ATPase-immunoreactive, exposed to the external environment at the apical surface), but were not mitochondria-rich. To our knowledge, this type of cell has not previously been described in hyperosmoregulating fish gills. Furthermore, modifications in the morphometrics and claudin mRNA abundance of kidney tissue support the notion that spatial alterations in claudin TJ proteins along the nephron of fishes will likely play an important role in the regulation of salt and water balance in these organisms.


Assuntos
Aclimatação/fisiologia , Claudinas/metabolismo , Brânquias/metabolismo , Íons/análise , Rim/metabolismo , Salinidade , Tetraodontiformes/metabolismo , Análise de Variância , Animais , Brânquias/ultraestrutura , Imuno-Histoquímica , Rim/ultraestrutura , Microscopia Eletrônica , Concentração Osmolar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPase Trocadora de Sódio-Potássio/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-19892030

RESUMO

In fishes, variation in paracellular permeability is important for regulating salt and water balance. Paracellular permeability is maintained by TJs in vertebrate epithelia. This study examined the spatial distribution and effects of salinity on claudin-3 isoform mRNA expression and abundance along the gastrointestinal (GI) tract of the euryhaline puffer fish (Tetraodon nigroviridis) and related these to morphological heterogeneity of the TJ complex. The puffer fish GI tract was divided into three regions (anterior, middle and posterior) and four isoforms of claudin-3 (Tncldn3a, Tncldn3b, Tncldn3c and Tncldn3d) were found to be expressed in each section. The effect of freshwater (FW) or seawater (SW) acclimation on regional 1) Tncldn3 isoform mRNA abundance, 2) TJ complex morphology and 3) Na(+)-K(+)-ATPase (NKA) activity was examined. In situ hybridization indicated that all Tncldn3 isoforms localized to the mucosal epithelium in the intestine. The mRNA abundance of Tncldn3 isoforms varied spatially along the GI tract. Furthermore, region as well as isoform specific alterations in mRNA abundance could be observed along the GI tract in response to salinity change. Qualitative TEM observations suggested that the depth of TJ complexes increased from anterior to posterior along the GI tract and that TJ complexes in the GI tract of FW fish were deeper than those in SW. NKA activity increased from anterior to posterior in fish acclimated to FW, whereas activity in fish acclimated to SW was uniformly high along the length of the intestine. Taken together data; (1) suggest a progressive decrease in epithelial permeability from anterior to posterior along the longitudinal axis of the puffer fish GI tract, (2) indicate that claudin-3 protein isoforms may play a role in regulating paracellular movement of solutes across this epithelium, and (3) provide further evidence that claudin-3 proteins are involved in the homeostatic control of salt and water balance in fishes.


Assuntos
Proteínas de Peixes/genética , Trato Gastrointestinal/metabolismo , Perfilação da Expressão Gênica , Proteínas de Membrana/genética , Tetraodontiformes/genética , Animais , Claudina-3 , Epitélio/enzimologia , Epitélio/metabolismo , Epitélio/ultraestrutura , Água Doce , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/ultraestrutura , Hibridização In Situ , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestrutura , Microscopia Eletrônica de Transmissão , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salinidade , Água do Mar , ATPase Trocadora de Sódio-Potássio/metabolismo , Tetraodontiformes/metabolismo , Junções Íntimas/enzimologia , Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura
8.
Mol Cell Endocrinol ; 317(1-2): 120-6, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-19969041

RESUMO

A primary cultured gill epithelium from the puffer fish Tetraodon nigroviridis was developed to examine the corticosteroid regulation of claudin isoform mRNA abundance in fish gills. Preparations were composed of polygonal epithelial cells exhibiting concentric apical microridges and zonula occludens-1 immunoreactivity along cell margins. No evidence was found to indicate the presence of Na(+)-K(+)-ATPase-immunoreactive or mitochondria-rich cells in cultured preparations. Therefore, epithelia appear to be composed of gill pavement cells (PVCs) only. An RT-PCR profile of 12 salinity responsive gill claudin tight junction (TJ) proteins (Tncldn3a, -3c, -6, -8d, -10d, -10e, -11a, -23b, -27a, -27c, -32a, and -33b) revealed the absence of Tncldn6, -10d and -10e in cultured epithelia, suggesting that these isoforms are not associated with gill PVCs. Cortisol treatment of cultured epithelia dose-dependently increased or decreased mRNA abundance of select claudin isoforms. Transcript abundance of several claudin isoforms was unaffected by cortisol treatment. These data provide evidence for the cell specific distribution of claudins in fish gills and suggest that heterogeneous alterations in the abundance of select claudin isoforms contribute to the corticosteroid regulation of gill permeability.


Assuntos
Claudinas/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Brânquias/metabolismo , Hidrocortisona/farmacologia , Tetraodontiformes/metabolismo , Aclimatação/efeitos dos fármacos , Animais , Claudinas/genética , Água Doce , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Imuno-Histoquímica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salinidade , Água do Mar , Tetraodontiformes/genética , Técnicas de Cultura de Tecidos
9.
J Comp Physiol B ; 179(4): 419-31, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19112569

RESUMO

Genes encoding for claudin-8 and -27 tight junction proteins in the euryhaline puffer fish (Tetraodon nigroviridis) were identified using its recently sequenced genome. Phylogenetic analysis indicated that multiple genes encoding for claudin-8 proteins (designated Tncldn8a, Tncldn8b, Tncldn8c and Tncldn8d) arose by tandem gene duplication. In contrast, both tandem and whole genome duplication events appear to have generated genes encoding for claudin-27 proteins (designated Tncldn27a, Tncldn27b, Tncldn27c and Tncldn27d). Tncldn8 and Tncldn27 mRNA were widely distributed in Tetraodon, suggesting involvement in various physiological processes. All Tncldn8 and Tncldn27 genes were expressed in gill and skin tissue (i.e., epithelia exposed directly to the external environment). A potential role for claudin-8 and -27 proteins in the regulation of hydromineral balance in Tetraodon was investigated by examining alterations in mRNA abundance in select ionoregulatory tissue of fish acclimated to freshwater (FW) and seawater (SW). In FW or SW, Tetraodon exhibited alterations in Na(+)-K(+)-ATPase activity (a correlate of transcellular transport) typical of a euryhaline teleost fish. Simultaneously, tissue and gene specific alterations in Tncldn8 and Tncldn27 transcript abundance occurred. These data provide some insight into the duplication history of cldn8 and cldn27 genes in fishes and suggest a possible role for claudin-8 and -27 proteins in the osmoregulatory strategies of euryhaline teleosts.


Assuntos
Aclimatação/fisiologia , Evolução Molecular , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Filogenia , Tetraodontiformes/genética , Junções Íntimas/genética , Aclimatação/genética , Animais , Claudinas , Primers do DNA/genética , Água Doce/química , Perfilação da Expressão Gênica , Genes Duplicados/genética , Brânquias/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Água do Mar/química , Pele/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
10.
Am J Physiol Regul Integr Comp Physiol ; 294(5): R1638-47, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18353883

RESUMO

Claudins are a large family of integral transmembrane tight junction (TJ) proteins involved in regulating the permeability of the paracellular pathway. In these studies, we clone and describe the tissue distribution of four claudin-3 genes (designated Tncldn3a, Tncldn3b, Tncldn3c, and Tncldn3d) from the euryhaline spotted green puffer fish Tetraodon nigroviridis and examine the response of Tetraodon and Tncldn3 mRNAs to salinity variation (freshwater, FW; seawater, SW; and hypersaline seawater, HSW). In Tetraodon, genes encoding for claudin-3 TJ proteins are widely expressed, suggesting that claudin-3 proteins participate in regulating paracellular permeability across various epithelia within fishes. Of particular note is the widespread distribution of Tncldn3 genes in tissues that regulate hydromineral balance (gills, skin, kidney, and intestine). Renal and intestinal tissues express all four Tncldn3 genes, while the gills and skin specifically express Tncldn3a and Tncldn3c. In response to salinity variation, Tetraodon exhibits characteristics typical of a euryhaline fish species: moderate changes in blood osmolality and muscle moisture content; alterations in gill, kidney, and intestinal Na(+)-K(+)-ATPase activity; and unaltered Na(+)-K(+)-ATPase activity in the integument. In conjunction with these changes, Tncldn3 mRNA expression exhibits marked and significant salinity-dependent alterations that are both tissue and gene specific. Overall, our data suggest that a decreased abundance of claudin-3 in Tetraodon occurs in "leakier" epithelia and that claudin-3 TJ proteins will likely play an important role in the maintenance of hydromineral balance across osmoregulatory epithelia of euryhaline fishes.


Assuntos
Proteínas de Membrana/metabolismo , Tetraodontiformes/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Actinas/biossíntese , Actinas/genética , Animais , Claudina-3 , Clonagem Molecular , Eletroforese em Gel de Ágar , Perfilação da Expressão Gênica , Concentração Osmolar , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Água do Mar , Sódio/sangue , ATPase Trocadora de Sódio-Potássio/metabolismo , Terminologia como Assunto , Tetraodontiformes/classificação , Distribuição Tecidual , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...