Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(3): 2062-2071, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38226790

RESUMO

A family of neurodegenerative diseases, including Huntington's disease (HD) and spinocerebellar ataxias, are associated with an abnormal polyglutamine (polyQ) expansion in mutant proteins that become prone to form amyloid-like aggregates. Prior studies have suggested a key role for ß-hairpin formation as a driver of nucleation and aggregation, but direct experimental studies have been challenging. Toward such research, we set out to enable spatiotemporal control over ß-hairpin formation by the introduction of a photosensitive ß-turn mimic in the polypeptide backbone, consisting of a newly designed azobenzene derivative. The reported derivative overcomes the limitations of prior approaches associated with poor photochemical properties and imperfect structural compatibility with the desired ß-turn structure. A new azobenzene-based ß-turn mimic was designed, synthesized, and found to display improved photochemical properties, both prior and after incorporation into the backbone of a polyQ polypeptide. The two isomers of the azobenzene-polyQ peptide showed different aggregate structures of the polyQ peptide fibrils, as demonstrated by electron microscopy and solid-state NMR (ssNMR). Notably, only peptides in which the ß-turn structure was stabilized (azobenzene in the cis configuration) closely reproduced the spectral fingerprints of toxic, ß-hairpin-containing fibrils formed by mutant huntingtin protein fragments implicated in HD. These approaches and findings will enable better deciphering of the roles of ß-hairpin structures in protein aggregation processes in HD and other amyloid-related neurodegenerative diseases.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Peptídeos/química , Compostos Azo , Doença de Huntington/metabolismo , Aminoácidos
2.
Front Mol Biosci ; 7: 4, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32083093

RESUMO

The DNA binding domains of Androgen/Glucocorticoid receptors (AR/GR), members of class I steroid receptors, bind as a homo-dimer to a cis-regulatory element. These response elements are arranged as inverted repeat (IR) of hexamer "AGAACA", separated with a 3 base pairs spacer. DNA binding domains of the Androgen receptor, AR-DBDs, in addition, selectively recognize a direct-like repeat (DR) arrangement of this hexamer. A chimeric AR protein, termed SPARKI, in which the second zinc-binding motif of AR is swapped with that of GR, however, fails to recognize DR-like elements. By molecular dynamic simulations, we identify how the DNA binding domains of the wild type AR/GR, and also the chimeric SPARKI model, distinctly interact with both IR and DR response elements. AR binds more strongly to DR than GR binds to IR elements. A SPARKI model built from the structure of the AR (SPARKI-AR) shows significantly fewer hydrogen bond interactions in complex with a DR sequence than with an IR sequence. Moreover, a SPARKI model based on the structure of the GR (SPARKI-GR) shows a considerable distortion in its dimerization domain when complexed to a DR-DNA whereas it remains in a stable conformation in a complex with an IR-DNA. The diminished interaction of SPARKI-AR with and the instability of SPARKI-GR on DR response elements agree with SPARKI's lack of affinity for these sequences. The more GR-like binding specificity of the chimeric SPARKI protein is further emphasized by both SPARKI models binding even more strongly to IR elements than observed for the DNA binding domain of the GR.

3.
Biophys J ; 113(4): 817-828, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28834718

RESUMO

Proton transfer in cytochrome c oxidase from the cellular inside to the binuclear redox center (BNC) can occur through two distinct pathways, the D- and K-channels. For the protein to function as both a redox enzyme and a proton pump, proton transfer into the protein toward the BNC or toward a proton loading site (and ultimately through the membrane) must be highly regulated. The PR → F transition is the first step in a catalytic cycle that requires proton transfer from the bulk at the N-side to the BNC. Molecular dynamics simulations of the PR → F intermediate of this transition, with 16 different combinations of protonation states of key residues in the D- and K-channel, show the impact of the K-channel on the D-channel to be protonation-state dependent. Strength as well as means of communication, correlations in positions, or communication along the hydrogen-bonded network depends on the protonation state of the K-channel residue K362. The conformational and hydrogen-bond dynamics of the D-channel residue N139 is regulated by an interplay of protonation in the D-channel and K362. N139 thus assumes a gating function by which proton passage through the D-channel toward E286 is likely facilitated for states with protonated K362 and unprotonated E286. In contrast, proton passage through the D-channel is hindered by N139's preference for a closed conformation in situations with protonated E286.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Simulação de Dinâmica Molecular , Prótons , Ligação de Hidrogênio , Oxirredução , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...