Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 75(9): 4226-38, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11287572

RESUMO

An internal ribosome entry site (IRES) mediates translation initiation of bovine viral diarrhea virus (BVDV) RNA. Studies have suggested that a portion of the N(pro) open reading frame (ORF) is required, although its exact function has not been defined. Here we show that a subgenomic (sg) BVDV RNA in which the NS3 ORF is preceded only by the 5' nontranslated region did not replicate to detectable levels following transfection. However, RNA synthesis and cytopathic effects were observed following serial passage in the presence of a noncytopathic helper virus. Five sg clones derived from the passaged virus contained an identical, silent substitution near the beginning of the NS3 coding sequence (G400U), as well as additional mutations. Four of the reconstructed mutant RNAs replicated in transfected cells, and in vitro translation showed increased levels of NS3 for the mutant RNAs compared to that of wild-type (wt) MetNS3. To more precisely dissect the role of these mutations, we constructed two sg derivatives: ad3.10, which contains only the G400U mutation, and ad3.7, with silent substitutions designed to minimize RNA secondary structure downstream of the initiator AUG. Both RNAs replicated and were translated in vitro to similar levels. Moreover, ad3.7 and ad3.10, but not wt MetNS3, formed toeprints downstream of the initiator AUG codon in an assay for detecting the binding of 40S ribosomal subunits and 43S ribosomal complexes to the IRES. These results suggest that a lack of stable RNA secondary structure(s), rather than a specific RNA sequence, immediately downstream of the initiator AUG is important for optimal translation initiation of pestivirus RNAs.


Assuntos
Vírus da Diarreia Viral Bovina/genética , Iniciação Traducional da Cadeia Peptídica , Peptídeo Hidrolases , RNA Helicases , RNA Viral/biossíntese , Replicon , Replicação Viral , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Linhagem Celular , Códon , DNA Viral , Vírus da Diarreia Viral Bovina/fisiologia , Genoma Viral , Dados de Sequência Molecular , Mutagênese , Estabilidade de RNA , Ribossomos/metabolismo , Proteínas não Estruturais Virais/genética
2.
Proc Natl Acad Sci U S A ; 97(14): 7981-6, 2000 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-10869440

RESUMO

We report here the discovery of a small molecule inhibitor of pestivirus replication. The compound, designated VP32947, inhibits the replication of bovine viral diarrhea virus (BVDV) in cell culture at a 50% inhibitory concentration of approximately 20 nM. VP32947 inhibits both cytopathic and noncytopathic pestiviruses, including isolates of BVDV-1, BVDV-2, border disease virus, and classical swine fever virus. However, the compound shows no activity against viruses from unrelated virus groups. Time of drug addition studies indicated that VP32947 acts after virus adsorption and penetration and before virus assembly and release. Analysis of viral macromolecular synthesis showed VP32947 had no effect on viral protein synthesis or polyprotein processing but did inhibit viral RNA synthesis. To identify the molecular target of VP32947, we isolated drug-resistant (DR) variants of BVDV-1 in cell culture. Sequence analysis of the complete genomic RNA of two DR variants revealed a single common amino acid change located within the coding region of the NS5B protein, the viral RNA-dependent RNA polymerase. When this single amino acid change was introduced into an infectious clone of drug-sensitive wild-type (WT) BVDV-1, replication of the resulting virus was resistant to VP32947. The RNA-dependent RNA polymerase activity of the NS5B proteins derived from WT and DR viruses expressed and purified from recombinant baculovirus-infected insect cells confirmed the drug sensitivity of the WT enzyme and the drug resistance of the DR enzyme. This work formally validates NS5B as a target for antiviral drug discovery and development. The utility of VP32947 and similar compounds for the control of pestivirus diseases, and for hepatitis C virus drug discovery efforts, is discussed.


Assuntos
Antivirais/farmacologia , Vírus da Diarreia Viral Bovina Tipo 1/efeitos dos fármacos , Vírus da Diarreia Viral Bovina Tipo 2/efeitos dos fármacos , Indóis/farmacologia , Pestivirus/efeitos dos fármacos , Triazinas/farmacologia , Animais , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Resistência Microbiana a Medicamentos , Genes Virais , Testes de Sensibilidade Microbiana , Mutação , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA