Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(23): 26525-26533, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32321237

RESUMO

The simultaneous imaging of magnetic fields and temperature (MT) is important in a range of applications, including studies of carrier transport and semiconductor device characterization. Techniques exist for separately measuring temperature (e.g., infrared (IR) microscopy, micro-Raman spectroscopy, and thermo-reflectance microscopy) and magnetic fields (e.g., scanning probe magnetic force microscopy and superconducting quantum interference devices). However, these techniques cannot measure magnetic fields and temperature simultaneously. Here, we use the exceptional temperature and magnetic field sensitivity of nitrogen vacancy (NV) spins in conformally coated nanodiamonds to realize simultaneous wide-field MT imaging at the device level. Our "quantum conformally attached thermo-magnetic" (Q-CAT) imaging enables (i) wide-field, high-frame rate imaging (100-1000 Hz); (ii) high sensitivity; and (iii) compatibility with standard microscopes. We apply this technique to study the industrially important problem of characterizing multifinger gallium nitride high-electron mobility transistors (GaN HEMTs). We spatially and temporally resolve the electric current distribution and resulting temperature rise, elucidating functional device behavior at the microscopic level. The general applicability of Q-CAT imaging serves as an important tool for understanding complex MT phenomena in material science, device physics, and related fields.

2.
ACS Appl Mater Interfaces ; 12(6): 7232-7238, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31951381

RESUMO

Water is often considered as the highest performance working fluid for liquid-vapor phase change due to its high thermal conductivity and large enthalpy of vaporization. However, a wide range of industrial systems require using low surface tension liquids where heat transfer enhancement has proved challenging for boiling and evaporation. Here, we enable a new paradigm of phase change heat transfer, which favors high volatility, low surface tension liquids rather than water. We utilized a nanoporous membrane of ≈600 nm thickness and <140 nm pore diameters supported on efficient liquid supply architectures, decoupling capillary pumping from viscous loss. Proof-of-concept devices were microfabricated and tested in a custom-built environmental chamber. We used R245fa, pentane, methanol, isopropyl alcohol, and water as working fluids with devices of total membrane area varying from 0.017 to 0.424 cm2. We realized a device-level pure evaporation heat flux of 144 ± 6 W/cm2 for water, and the highest evaporation heat flux was obtained with pentane at 550 ± 90 W/cm2. We developed a three-level model to understand vapor dynamics near the interface and thermal conduction within the device, which showed good agreement with experiments. We then compared pore-level heat transfer of different fluids, where R245fa showed approximately 10 times the performance of water under the same working conditions. Finally, we illustrate the usefulness of a figure of merit extracted from the kinetic theory for evaporation. The current work provides fundamental insights into the evaporation of low surface tension liquids, which can impact various applications such as refrigeration and air conditioning, petroleum and solvent distillation, and on-chip electronics cooling.

3.
Nano Lett ; 19(7): 4745-4751, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31184905

RESUMO

Atomically thin two-dimensional (2D) materials have shown great potential for applications in nanoscale electronic and optical devices. A fundamental property of these 2D flakes that needs to be well-characterized is the thermal expansion coefficient (TEC), which is instrumental to the dry transfer process and thermal management of 2D material-based devices. However, most of the current studies of 2D materials' TEC extensively rely on simulations due to the difficulty of performing experimental measurements on an atomically thin, micron-sized, and optically transparent 2D flake. In this work, we present a three-substrate approach to characterize the TEC of monolayer molybdenum disulfide (MoS2) using micro-Raman spectroscopy. The temperature dependence of the Raman peak shift was characterized with three different substrate conditions, from which the in-plane TEC of monolayer MoS2 was extracted on the basis of lattice symmetries. Independently from two different phonon modes of MoS2, we measured the in-plane TECs as (7.6 ± 0.9) × 10-6 K-1 and (7.4 ± 0.5) × 10-6 K-1, respectively, which are in good agreement with previously reported values based on first-principle calculations. Our work is not only useful for thermal mismatch reduction during material transfer or device operation but also provides a general experimental method that does not rely on simulations to study key properties of 2D materials.

4.
Microsyst Nanoeng ; 4: 1, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31057891

RESUMO

High power density electronics are severely limited by current thermal management solutions which are unable to dissipate the necessary heat flux while maintaining safe junction temperatures for reliable operation. We designed, fabricated, and experimentally characterized a microfluidic device for ultra-high heat flux dissipation using evaporation from a nanoporous silicon membrane. With ~100 nm diameter pores, the membrane can generate high capillary pressure even with low surface tension fluids such as pentane and R245fa. The suspended ultra-thin membrane structure facilitates efficient liquid transport with minimal viscous pressure losses. We fabricated the membrane in silicon using interference lithography and reactive ion etching and then bonded it to a high permeability silicon microchannel array to create a biporous wick which achieves high capillary pressure with enhanced permeability. The back side consisted of a thin film platinum heater and resistive temperature sensors to emulate the heat dissipation in transistors and measure the temperature, respectively. We experimentally characterized the devices in pure vapor-ambient conditions in an environmental chamber. Accordingly, we demonstrated heat fluxes of 665 ± 74 W/cm2 using pentane over an area of 0.172 mm × 10 mm with a temperature rise of 28.5 ± 1.8 K from the heated substrate to ambient vapor. This heat flux, which is normalized by the evaporation area, is the highest reported to date in the pure evaporation regime, that is, without nucleate boiling. The experimental results are in good agreement with a high fidelity model which captures heat conduction in the suspended membrane structure as well as non-equilibrium and sub-continuum effects at the liquid-vapor interface. This work suggests that evaporative membrane-based approaches can be promising towards realizing an efficient, high flux thermal management strategy over large areas for high-performance electronics.

5.
Rev Sci Instrum ; 88(11): 113111, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29195348

RESUMO

As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E2 (high), A1 longitudinal optical (LO), and E2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to demonstrate its viability, this technique is applicable to any solid-state material with a suitable Raman response and will likely enable new measurement capabilities in a wide variety of scientific and engineering applications.

6.
Rev Sci Instrum ; 87(6): 061501, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27370419

RESUMO

Micro-Raman thermography is one of the most popular techniques for measuring local temperature rise in gallium nitride (GaN) high electron mobility transistors with high spatial and temporal resolution. However, accurate temperature measurements based on changes in the Stokes peak positions of the GaN epitaxial layers require properly accounting for the stress and/or strain induced by the inverse piezoelectric effect. It is common practice to use the pinched OFF state as the unpowered reference for temperature measurements because the vertical electric field in the GaN buffer that induces inverse piezoelectric stress/strain is relatively independent of the gate bias. Although this approach has yielded temperature measurements that agree with those derived from the Stokes/anti-Stokes ratio and thermal models, there has been significant difficulty in quantifying the mechanical state of the GaN buffer in the pinched OFF state from changes in the Raman spectra. In this paper, we review the experimental technique of micro-Raman thermography and derive expressions for the detailed dependence of the Raman peak positions on strain, stress, and electric field components in wurtzite GaN. We also use a combination of semiconductor device modeling and electro-mechanical modeling to predict the stress and strain induced by the inverse piezoelectric effect. Based on the insights gained from our electro-mechanical model and the best values of material properties in the literature, we analyze changes in the E2 high and A1 (LO) Raman peaks and demonstrate that there are major quantitative discrepancies between measured and modeled values of inverse piezoelectric stress and strain. We examine many of the hypotheses offered in the literature for these discrepancies but conclude that none of them satisfactorily resolves these discrepancies. Further research is needed to determine whether the electric field components could be affecting the phonon frequencies apart from the inverse piezoelectric effect in wurtzite GaN, which has been predicted theoretically in zinc blende gallium arsenide (GaAs).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...