Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 114(20): 205001, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-26047233

RESUMO

This Letter describes plasma discharges with a high temperature of bulk electrons in the axially symmetric high-mirror-ratio (R=35) open magnetic system gas dynamic trap (GDT) in the Budker Institute (Novosibirsk). According to Thomson scattering measurements, the on-axis electron temperature averaged over a number of sequential shots is 660±50 eV with the plasma density being 0.7×10^{19} m^{-3}; in few shots, electron temperature exceeds 900 eV. This corresponds to at least a threefold increase with respect to previous experiments both at GDT and at other comparable machines, thus, demonstrating the highest quasistationary (about 1 ms) electron temperature achieved in open traps. The breakthrough is made possible by application of a new 0.7 MW/54.5 GHz electron cyclotron resonance heating system in addition to standard 5 MW heating by neutral beams, and application of a radial electric field to mitigate the flute instability.

2.
Materials (Basel) ; 8(12): 8452-8459, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-28793722

RESUMO

The Budker Institute of Nuclear Physics in worldwide collaboration has developed a project of a 14 MeV neutron source for fusion material studies and other applications. The projected neutron source of the plasma type is based on the gas dynamic trap (GDT), which is a special magnetic mirror system for plasma confinement. Essential progress in plasma parameters has been achieved in recent experiments at the GDT facility in the Budker Institute, which is a hydrogen (deuterium) prototype of the source. Stable confinement of hot-ion plasmas with the relative pressure exceeding 0.5 was demonstrated. The electron temperature was increased up to 0.9 keV in the regime with additional electron cyclotron resonance heating (ECRH) of a moderate power. These parameters are the record for axisymmetric open mirror traps. These achievements elevate the projects of a GDT-based neutron source on a higher level of competitive ability and make it possible to construct a source with parameters suitable for materials testing today. The paper presents the progress in experimental studies and numerical simulations of the mirror-based fusion neutron source and its possible applications including a fusion material test facility and a fusion-fission hybrid system.

3.
Rev Sci Instrum ; 83(2): 02A318, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380165

RESUMO

Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

4.
Rev Sci Instrum ; 82(6): 063509, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21721693

RESUMO

At the TEXTOR tokamak in Jülich, Germany, a modular dispersion interferometer was installed and operated for the first time. Equipped with four lines of sight, the line-integrated density could be measured in parallel at different major radii with a resolution of better than 3 × 10(17) m(-2). This paper will describe the setup and show the first measurement results. Among others, it was possible to detect the evolution of a disruption with a time resolution of 4 µs. The movement of the runaway beam following the disruption could be resolved spatially and temporarily.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(6 Pt 2): 067402, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20866548

RESUMO

Within the framework of paraxial approximation it is shown that in an anisotropic plasma with sloshing ions confined an open-ended system a magnetic hole is formed near the turning point of the sloshing ions above the threshold of the mirror instability. The magnetic field experiences a jump at the hole boundary from the side of the magnetic mirror. For a small excess over the mirror instability threshold, the surface of the discontinuity has the shape of a truncated paraboloid, and the magnitude of the magnetic field jump at the system axis is proportional to the radius of the hole and gradually decreases to zero away of the axis. It is argued that disappearance of the magnetic hole because of the widening of the sloshing ions angular spread in the course of the neutral beam injection results in abrupt anticorrelated changes of the diamagnetic signals measured near the turning point of the sloshing ions and near the midplane of the gas-dynamic trap.

6.
Rev Sci Instrum ; 79(10): 10E708, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044526

RESUMO

The design and main characteristics of 14-channel dispersion interferometer for plasma profile measurement and control in TEXTOR tokamak are presented. The diagnostic is engineered on the basis of modular concept, the 10.6 microm CO(2) laser source and all optical and mechanical elements of each module are arranged in a compact housing. A set of mirrors and retroreflectors inside the TEXTOR vacuum vessel provides full coverage of the torus cross section with 12 vertical and two diagonal lines of sight, no rigid frame for vibration isolation is required. Results of testing of the single-channel prototype diagnostic and the pilot module of the multichannel dispersion interferometer are presented.

7.
Phys Rev Lett ; 90(10): 105002, 2003 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-12689003

RESUMO

In the axially symmetric magnetic mirror device gas dynamic trap (GDT), on-axis transverse beta (ratio of the transverse plasma pressure to magnetic field pressure) exceeding 0.4 in the fast ion turning points has been first achieved. The plasma has been heated by injection of neutral beams, which at the same time produced anisotropic fast ions. Neither enhanced losses of the plasma nor anomalies in the fast ion scattering and slowing down were observed. This observation confirms predicted magnetohydrodynamic stability of plasma in the axially symmetric mirror devices with average min-B, like the GDT is. The measured beta value is rather close to that expected in different versions of the GDT based 14 MeV neutron source for fusion materials testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...