Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815055

RESUMO

Intraventricular hemorrhage (IVH) is a common complication of premature birth. Survivors are often left with cerebral palsy, intellectual disability, and/or hydrocephalus. Animal models suggest that brain tissue shrinkage with subsequent vascular stretch and tear is an important step in the pathophysiology, but the cause of this shrinkage is unknown. Clinical risk factors for IVH are biomarkers of hypoxic-ischemic stress, which causes mature neurons to swell. However, immature neuronal volume might shift in the opposite direction under these conditions. This is because immature neurons express the chloride salt and water transporter NKCC1, which subserves regulatory volume increases in nonneural cells, whereas mature neurons express KCC2, which subserves regulatory volume decreases. When hypoxic ischemic conditions reduce active ion transport and increase the cytoplasmic membrane permeability, the effects of these transporters will be diminished. As a consequence, while mature neurons swell (cytotoxic edema) immature neurons might shrink. After hypoxic-ischemic stress, in vivo and in vitro multi-photon imaging of perinatal transgenic mice demonstrated shrinkage of viable immature neurons, bulk tissue shrinkage, and blood vessel displacement. Neuronal shrinkage was correlated with age-dependent membrane salt and water transporter expression using immunohistochemistry. Shrinkage of immature neurons was prevented by prior genetic or pharmacological inhibition of NKCC1 transport. These findings open new avenues of investigation for the detection of acute brain injury by neuroimaging, as well as prevention of neuronal shrinkage and the ensuing IVH, in premature infants.

2.
J Neurosci ; 43(34): 6084-6107, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37527922

RESUMO

In in vitro models of acute brain injury, neuronal death may overwhelm the capacity for microglial phagocytosis, creating a queue of dying neurons awaiting clearance. Neurons undergoing programmed cell death are in this queue, and are the most visible and frequently quantified measure of neuronal death after injury. However, the size of this queue should be equally sensitive to changes in neuronal death and the rate of phagocytosis. Using rodent organotypic hippocampal slice cultures as a model of acute perinatal brain injury, serial imaging demonstrated that the capacity for microglial phagocytosis of dying neurons was overwhelmed for 2 weeks. Altering phagocytosis rates (e.g., by changing the number of microglia) dramatically changed the number of visibly dying neurons. Similar effects were generated when the visibility of dying neurons was altered by changing the membrane permeability for stains that label dying neurons. Canonically neuroprotective interventions, such as seizure blockade, and neurotoxic maneuvers, such as perinatal ethanol exposure, were mediated by effects on microglial activity and the membrane permeability of neurons undergoing programmed cell death. These canonically neuroprotective and neurotoxic interventions had either no or opposing effects on healthy surviving neurons identified by the ongoing expression of transgenic fluorescent proteins.SIGNIFICANCE STATEMENT In in vitro models of acute brain injury, microglial phagocytosis is overwhelmed by the number of dying cells. Under these conditions, the assumptions on which assays for neuroprotective and neurotoxic effects are based are no longer valid. Thus, longitudinal assays of healthy cells, such as serial assessment of the fluorescence emission of transgenically expressed proteins, provide more accurate estimates of cell death than do single-time point anatomic or biochemical assays of the number of dying neurons. More accurate estimates of death rates in vitro will increase the translatability of preclinical studies of neuroprotection and neurotoxicity.


Assuntos
Lesões Encefálicas , Humanos , Lesões Encefálicas/metabolismo , Morte Celular , Microglia/metabolismo , Neurônios/metabolismo , Apoptose , Fagocitose/fisiologia
3.
Am J Neurodegener Dis ; 12(2): 42-84, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213710

RESUMO

OBJECTIVE: Magnetic resonance imaging (MRI) of the brain or spine examines the findings as well as the time interval between the onset of symptoms and other adverse effects in coronavirus disease that first appeared in 2019 (COVID-19) patients. The goal of this study is to look at studies that use neuroimaging to look at neurological and neuroradiological symptoms in COVID-19 patients. METHODS: We try to put together all of the research on how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes neurological symptoms and cognitive-behavioral changes and give a full picture. RESULTS: We have categorized neuroimaging findings into subtitles such as: headache and dizziness; cerebrovascular complications after stroke; Intracerebral Hemorrhage (ICH); Cerebral Microbleeds (CMBs); encephalopathy; meningitis; encephalitis and myelitis; altered mental status (AMS) and delirium; seizure; neuropsychiatric symptoms; Guillain-Barre Syndrome (GBS) and its variants; smell and taste disorders; peripheral neuropathy; Mild Cognitive Impairment (MCI); and myopathy and myositis. CONCLUSION: In this review study, we talked about some MRI findings that show how COVID-19 affects the nervous system based on what we found.

4.
bioRxiv ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824708

RESUMO

After acute brain injury, neuronal apoptosis may overwhelm the capacity for microglial phagocytosis, creating a queue of dying neurons awaiting clearance. The size of this queue should be equally sensitive to changes in neuronal death and the rate of phagocytosis. Using rodent organotypic hippocampal slice cultures as a model of acute perinatal brain injury, serial imaging demonstrated that the capacity for microglial phagocytosis of dying neurons was overwhelmed for two weeks. Altering phagocytosis rates, e.g. by changing the number of microglia, dramatically changed the number of visibly dying neurons. Similar effects were generated when the visibility of dying neurons was altered by changing the membrane permeability for vital stains. Canonically neuroprotective interventions such as seizure blockade and neurotoxic maneuvers such as perinatal ethanol exposure were mediated by effects on microglial activity and the membrane permeability of apoptotic neurons, and had either no or opposing effects on healthy surviving neurons. Significance: After acute brain injury, microglial phagocytosis is overwhelmed by the number of dying cells. Under these conditions, the assumptions on which assays for neuroprotective and neurotoxic effects are based are no longer valid. Thus longitudinal assays of healthy cells, such as assessment of the fluorescence emission of transgenically-expressed proteins, provide more accurate estimates of cell death than do single-time-point anatomical or biochemical assays. More accurate estimates of death rates will increase the translatability of preclinical studies of neuroprotection and neurotoxicity.

5.
J Neurosci ; 38(39): 8473-8483, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30150365

RESUMO

Postinjury epilepsy is an potentially preventable sequela in as many as 20% of patients with brain insults. For these cases biomarkers of epileptogenesis are critical to facilitate identification of patients at high-risk of developing epilepsy and to introduce effective anti-epileptogenic interventions. Here, we demonstrate that delayed brain-heart coincidences serve as a reliable biomarker. In a murine model of post-infection acquired epilepsy, we used long-term simultaneous measurements of the brain activity via electroencephalography and autonomic cardiac activity via electrocardiography, in male mice, to quantitatively track brain-heart interactions during epileptogenesis. We find that abnormal cortical discharges precede abnormal fluctuations in the cardiac rhythm at the resolution of single beat-to-beat intervals. The delayed brain-heart coincidence is detectable as early as the onset of chronic measurements, 2-14 weeks before the first seizure, only in animals that become epileptic, and increases during epileptogenesis. Therefore, delayed brain-heart coincidence serves as a biomarker of epileptogenesis and could be used for phenotyping, diagnostic, and therapeutic purposes.SIGNIFICANCE STATEMENT No biomarker that readily predicts and tracks epileptogenesis currently exists for the wide range of human acquired epilepsies. Here, we used long-term measurements of brain and heart activity in a mouse model of post-infection acquired epilepsy to investigate the potential of brain-heart interaction as a biomarker of epileptogenesis. We found that delayed coincidences from brain to heart can clearly separate the mice that became epileptic from those that did not weeks before development of epilepsy. Our findings allow for phenotyping and tracking of epileptogenesis in this and likely other models of acquired epilepsy. Such capability is critical for efficient adjunctive treatment development and for tracking the efficacy of such treatments.


Assuntos
Encéfalo/fisiopatologia , Epilepsia/diagnóstico , Coração/fisiopatologia , Animais , Biomarcadores , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia/microbiologia , Epilepsia/fisiopatologia , Frequência Cardíaca , Masculino , Camundongos Endogâmicos C57BL , Doenças Parasitárias/complicações
6.
eNeuro ; 5(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627656

RESUMO

A multielectrode system that can address widely separated targets at multiple sites across multiple brain regions with independent implant angling is needed to investigate neural function and signaling in systems and circuits of small animals. Here, we present the systemDrive, a novel multisite, multiregion microdrive that is capable of moving microwire electrode bundles into targets along independent and nonparallel drive trajectories. Our design decouples the stereotaxic surgical placement of individual guide cannulas for each trajectory from the placement of a flexible drive structure. This separation enables placement of many microwire multitrodes along widely spaced and independent drive axes with user-set electrode trajectories and depths from a single microdrive body, and achieves stereotaxic precision with each. The system leverages tight tube-cannula tolerances and geometric constraints on flexible drive axes to ensure concentric alignment of electrode bundles within guide cannulas. Additionally, the headmount and microdrive both have an open-center design to allow for the placement of additional sensing modalities. This design is the first, in the context of small rodent chronic research, to provide the capability to finely position microwires through multiple widely distributed cell groups, each with stereotaxic precision, along arbitrary and nonparallel trajectories that are not restricted to emanate from a single source. We demonstrate the use of the systemDrive in male Long-Evans rats to observe simultaneous single-unit and multiunit activity from multiple widely separated sleep-wake regulatory brainstem cell groups, along with cortical and hippocampal activity, during free behavior over multiple many-day continuous recording periods.


Assuntos
Encéfalo/fisiologia , Eletrodos Implantados , Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Potenciais Evocados/fisiologia , Vigília/fisiologia , Animais , Encéfalo/citologia , Masculino , Microeletrodos , Vias Neurais/fisiologia , Neurônios/fisiologia , Ratos , Ratos Long-Evans , Técnicas Estereotáxicas/instrumentação
7.
Sci Rep ; 7: 43652, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28272506

RESUMO

One of the largest single sources of epilepsy in the world is produced as a neurological sequela in survivors of cerebral malaria. Nevertheless, the pathophysiological mechanisms of such epileptogenesis remain unknown and no adjunctive therapy during cerebral malaria has been shown to reduce the rate of subsequent epilepsy. There is no existing animal model of postmalarial epilepsy. In this technical report we demonstrate the first such animal models. These models were created from multiple mouse and parasite strain combinations, so that the epilepsy observed retained universality with respect to genetic background. We also discovered spontaneous sudden unexpected death in epilepsy (SUDEP) in two of our strain combinations. These models offer a platform to enable new preclinical research into mechanisms and prevention of epilepsy and SUDEP.


Assuntos
Morte Súbita/etiologia , Epilepsia/complicações , Epilepsia/etiologia , Malária Cerebral/complicações , Animais , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia/diagnóstico , Epilepsia/mortalidade , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Masculino , Camundongos , Plasmodium berghei , Análise de Sobrevida
8.
Artigo em Inglês | MEDLINE | ID: mdl-28698712

RESUMO

Sleep is important for normal brain function, and sleep disruption is comorbid with many neurological diseases. There is a growing mechanistic understanding of the neurological basis for sleep regulation that is beginning to lead to mechanistic mathematically described models. It is our objective to validate the predictive capacity of such models using data assimilation (DA) methods. If such methods are successful, and the models accurately describe enough of the mechanistic functions of the physical system, then they can be used as sophisticated observation systems to reveal both system changes and sources of dysfunction with neurological diseases and identify routes to intervene. Here we report on extensions to our initial efforts [1] at applying unscented Kalman Filter (UKF) to models of sleep regulation on three fronts: tools for multi-parameter fitting; a sophisticated observation model to apply the UKF for observations of behavioral state; and comparison with data recorded from brainstem cell groups thought to regulate sleep.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...