Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38489753

RESUMO

The DNA exonuclease TREX1 (Three-prime repair exonuclease 1) is critical for preventing autoimmunity in mice and humans by degrading endogenous cytosolic DNA, which otherwise triggers activation of the innate cGAS/STING pathway leading to the production of type I IFNs. Since tumor cells are prone to aberrant cytosolic DNA accumulation, we hypothesized that they are critically dependent on TREX1 activity to limit their immunogenicity. Here we show, that in tumor cells TREX1 indeed restricts the spontaneous activation of the cGAS/STING pathway and the subsequent induction of a type I IFN response. As a result, TREX1 deficiency compromised in vivo tumor growth in mice. This delay depended on a functional immune system, systemic type I IFN signaling, and tumor-intrinsic cGAS expression. Mechanistically, we show that tumor TREX1 loss drove activation of CD8 T cells and NK cells, prevented CD8 T cell exhaustion, and remodeled an immunosuppressive myeloid compartment. Consequently, TREX1 deficiency synergized with T cell-directed immune checkpoint blockade. Collectively, we conclude that TREX1 is essential to limit tumor immunogenicity, and that targeting this innate immune checkpoint remodels the tumor microenvironment and enhances anti-tumor immunity by itself and in combination with T cell-targeted therapies.

2.
Cell Rep ; 42(6): 112599, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37279110

RESUMO

Therapeutic neoantigen cancer vaccines have limited clinical efficacy to date. Here, we identify a heterologous prime-boost vaccination strategy using a self-assembling peptide nanoparticle TLR-7/8 agonist (SNP) vaccine prime and a chimp adenovirus (ChAdOx1) vaccine boost that elicits potent CD8 T cells and tumor regression. ChAdOx1 administered intravenously (i.v.) had 4-fold higher antigen-specific CD8 T cell responses than mice boosted by the intramuscular (i.m.) route. In the therapeutic MC38 tumor model, i.v. heterologous prime-boost vaccination enhances regression compared with ChAdOx1 alone. Remarkably, i.v. boosting with a ChAdOx1 vector encoding an irrelevant antigen also mediates tumor regression, which is dependent on type I IFN signaling. Single-cell RNA sequencing of the tumor myeloid compartment shows that i.v. ChAdOx1 reduces the frequency of immunosuppressive Chil3 monocytes and activates cross-presenting type 1 conventional dendritic cells (cDC1s). The dual effect of i.v. ChAdOx1 vaccination enhancing CD8 T cells and modulating the TME represents a translatable paradigm for enhancing anti-tumor immunity in humans.


Assuntos
Linfócitos T CD8-Positivos , Vacinação , Humanos , Camundongos , Animais , Imunidade Adaptativa , Vetores Genéticos , Adjuvantes Imunológicos
3.
Cell ; 185(23): 4317-4332.e15, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36302380

RESUMO

Therapeutic cancer vaccines are designed to increase tumor-specific T cell immunity. However, suppressive mechanisms within the tumor microenvironment (TME) may limit T cell function. Here, we assessed how the route of vaccination alters intratumoral myeloid cells. Using a self-assembling nanoparticle vaccine that links tumor antigen peptides to a Toll-like receptor 7/8 agonist (SNP-7/8a), we treated tumor-bearing mice subcutaneously (SNP-SC) or intravenously (SNP-IV). Both routes generated antigen-specific CD8+ T cells that infiltrated tumors. However, only SNP-IV mediated tumor regression, dependent on systemic type I interferon at the time of boost. Single-cell RNA-sequencing revealed that intratumoral monocytes expressing an immunoregulatory gene signature (Chil3, Anxa2, Wfdc17) were reduced after SNP-IV boost. In humans, the Chil3+ monocyte gene signature is enriched in CD16- monocytes and associated with worse outcomes. Our results show that the generation of tumor-specific CD8+ T cells combined with remodeling of the TME is a promising approach for tumor immunotherapy.


Assuntos
Vacinas Anticâncer , Microambiente Tumoral , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Imunoterapia/métodos , Antígenos de Neoplasias , Vacinação/métodos , Adjuvantes Imunológicos
4.
Eur Respir J ; 58(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33446605

RESUMO

BACKGROUND: Pulmonary sarcoidosis is an inflammatory disease characterised by granuloma formation and heterogeneous clinical outcome. Tumour necrosis factor (TNF) is a pro-inflammatory cytokine contributing to granuloma formation and high levels of TNF have been shown to associate with progressive disease. Mononuclear phagocytes (MNPs) are potent producers of TNF and highly responsive to inflammation. In sarcoidosis, alveolar macrophages have been well studied. However, MNPs also include monocytes/monocyte-derived cells and dendritic cells, which are poorly studied in sarcoidosis, despite their central role in inflammation. OBJECTIVE: To determine the role of pulmonary monocyte-derived cells and dendritic cells during sarcoidosis. METHODS: We performed in-depth phenotypic, functional and transcriptomic analysis of MNP subsets from blood and bronchoalveolar lavage (BAL) fluid from 108 sarcoidosis patients and 30 healthy controls. We followed the clinical development of patients and assessed how the repertoire and function of MNP subsets at diagnosis correlated with 2-year disease outcome. RESULTS: Monocytes/monocyte-derived cells were increased in blood and BAL of sarcoidosis patients compared to healthy controls. Interestingly, high frequencies of blood intermediate monocytes at time of diagnosis associated with chronic disease development. RNA sequencing analysis showed highly inflammatory MNPs in BAL of sarcoidosis patients. Furthermore, frequencies of BAL monocytes/monocyte-derived cells producing TNF without exogenous stimulation at time of diagnosis increased in patients that were followed longitudinally. In contrast to alveolar macrophages, the frequency of TNF-producing BAL monocytes/monocyte-derived cells at time of diagnosis was highest in sarcoidosis patients that developed progressive disease. CONCLUSION: Our data show that pulmonary monocytes/monocyte-derived cells are highly inflammatory and can be used as a predictor of disease outcome in sarcoidosis patients.


Assuntos
Sarcoidose Pulmonar , Sarcoidose , Líquido da Lavagem Broncoalveolar , Humanos , Monócitos , Fator de Necrose Tumoral alfa
5.
Nat Immunol ; 22(1): 41-52, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139915

RESUMO

Personalized cancer vaccines are a promising approach for inducing T cell immunity to tumor neoantigens. Using a self-assembling nanoparticle vaccine that links neoantigen peptides to a Toll-like receptor 7/8 agonist (SNP-7/8a), we show how the route and dose alter the magnitude and quality of neoantigen-specific CD8+ T cells. Intravenous vaccination (SNP-IV) induced a higher proportion of TCF1+PD-1+CD8+ T cells as compared to subcutaneous immunization (SNP-SC). Single-cell RNA sequencing showed that SNP-IV induced stem-like genes (Tcf7, Slamf6, Xcl1) whereas SNP-SC enriched for effector genes (Gzmb, Klrg1, Cx3cr1). Stem-like cells generated by SNP-IV proliferated and differentiated into effector cells upon checkpoint blockade, leading to superior antitumor response as compared to SNP-SC in a therapeutic model. The duration of antigen presentation by dendritic cells controlled the magnitude and quality of CD8+ T cells. These data demonstrate how to optimize antitumor immunity by modulating vaccine parameters for specific generation of effector or stem-like CD8+ T cells.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Fator 1-alfa Nuclear de Hepatócito/análise , Nanopartículas , Animais , Apresentação de Antígeno , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Feminino , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Vacinação
6.
Nat Biotechnol ; 38(3): 320-332, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932728

RESUMO

Personalized cancer vaccines targeting patient-specific neoantigens are a promising cancer treatment modality; however, neoantigen physicochemical variability can present challenges to manufacturing personalized cancer vaccines in an optimal format for inducing anticancer T cells. Here, we developed a vaccine platform (SNP-7/8a) based on charge-modified peptide-TLR-7/8a conjugates that are chemically programmed to self-assemble into nanoparticles of uniform size (~20 nm) irrespective of the peptide antigen composition. This approach provided precise loading of diverse peptide neoantigens linked to TLR-7/8a (adjuvant) in nanoparticles, which increased uptake by and activation of antigen-presenting cells that promote T-cell immunity. Vaccination of mice with SNP-7/8a using predicted neoantigens (n = 179) from three tumor models induced CD8 T cells against ~50% of neoantigens with high predicted MHC-I binding affinity and led to enhanced tumor clearance. SNP-7/8a delivering in silico-designed mock neoantigens also induced CD8 T cells in nonhuman primates. Altogether, SNP-7/8a is a generalizable approach for codelivering peptide antigens and adjuvants in nanoparticles for inducing anticancer T-cell immunity.


Assuntos
Adjuvantes Imunológicos/química , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/administração & dosagem , Melanoma Experimental/tratamento farmacológico , Animais , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Melanoma Experimental/imunologia , Camundongos , Nanopartículas , Medicina de Precisão , Primatas , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Vacinação , Vacinas Conjugadas
7.
PLoS Biol ; 17(6): e3000328, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31206510

RESUMO

Peptide immunogens provide an approach to focus antibody responses to specific neutralizing sites on the HIV envelope protein (Env) trimer or on other pathogens. However, the physical characteristics of peptide immunogens can limit their pharmacokinetic and immunological properties. Here, we have designed synthetic "star" nanoparticles based on biocompatible N-[(2-hydroxypropyl)methacrylamide] (HPMA)-based polymer arms extending from a poly(amidoamine) (PAMAM) dendrimer core. In mice, these star nanoparticles trafficked to lymph nodes (LNs) by 4 hours following vaccination, where they were taken up by subcapsular macrophages and then resident dendritic cells (DCs). Immunogenicity optimization studies revealed a correlation of immunogen density with antibody titers. Furthermore, the co-delivery of Env variable loop 3 (V3) and T-helper peptides induced titers that were 2 logs higher than if the peptides were given in separate nanoparticles. Finally, we performed a nonhuman primate (NHP) study using a V3 glycopeptide minimal immunogen that was structurally optimized to be recognized by Env V3/glycan broadly neutralizing antibodies (bnAbs). When administered with a potent Toll-like receptor (TLR) 7/8 agonist adjuvant, these nanoparticles elicited high antibody binding titers to the V3 site. Similar to human V3/glycan bnAbs, certain monoclonal antibodies (mAbs) elicited by this vaccine were glycan dependent or targeted the GDIR peptide motif. To improve affinity to native Env trimer affinity, nonhuman primates (NHPs) were boosted with various SOSIP Env proteins; however, significant neutralization was not observed. Taken together, this study provides a new vaccine platform for administration of glycopeptide immunogens for focusing immune responses to specific bnAb epitopes.


Assuntos
Vacinas contra a AIDS/imunologia , HIV-1/imunologia , Nanopartículas/uso terapêutico , Animais , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Epitopos/imunologia , Feminino , Proteína gp120 do Envelope de HIV/química , Infecções por HIV/imunologia , Soropositividade para HIV/imunologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Peptídeos , Primatas
8.
J Immunol ; 202(7): 2069-2081, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30760619

RESUMO

Influenza A virus (IAV) infection constitutes an annual health burden across the globe. Plasmacytoid dendritic cells (PDCs) are central in antiviral defense because of their superior capacity to produce type I IFNs in response to viruses. Dendritic cells (DCs) differ depending on their anatomical location. However, only limited host-pathogen data are available from the initial site of infection in humans. In this study, we investigated how human tonsil PDCs, likely exposed to virus because of their location, responded to IAV infection compared with peripheral blood PDCs. In tonsils, unlike in blood, PDCs are the most frequent DC subset. Both tonsil and blood PDCs expressed several genes necessary for pathogen recognition and immune response, generally in a similar pattern. MxA, a protein that renders cells resistant to IAV infection, was detected in both tonsil and blood PDCs. However, despite steady-state MxA expression and contrary to previous reports, at high IAV concentrations (typically cytopathic to other immune cells), both tonsil and blood PDCs supported IAV infection. IAV exposure resulted in PDC maturation by upregulation of CD86 expression and IFN-α secretion. Interestingly, blood PDCs secreted 10-fold more IFN-α in response to IAV compared with tonsil PDCs. Tonsil PDCs also had a dampened cytokine response to purified TLR ligands compared with blood PDCs. Our findings suggest that tonsil PDCs may be less responsive to IAV than blood PDCs, highlighting the importance of studying immune cells at their proposed site of function.


Assuntos
Células Dendríticas/imunologia , Influenza Humana/imunologia , Interferon-alfa/imunologia , Tonsila Palatina/imunologia , Humanos , Vírus da Influenza A/imunologia , Transcriptoma
9.
Biomacromolecules ; 20(2): 854-870, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30608149

RESUMO

Small molecule Toll-like receptor-7 and -8 agonists (TLR-7/8a) can be used as vaccine adjuvants to induce CD8 T cell immunity but require formulations that prevent systemic toxicity and focus adjuvant activity in lymphoid tissues. Here, we covalently attached TLR-7/8a to polymers of varying composition, chain architecture and hydrodynamic behavior (∼300 nm submicrometer particles, ∼10 nm micelles and ∼4 nm flexible random coils) and evaluated how these parameters of polymer-TLR-7/8a conjugates impact adjuvant activity in vivo. Attachment of TLR-7/8a to any of the polymer compositions resulted in a nearly 10-fold reduction in systemic cytokines (toxicity). Moreover, both lymph node cytokine production and the magnitude of CD8 T cells induced against protein antigen increased with increasing polymer-TLR-7/8a hydrodynamic radius, with the submicrometer particle inducing the highest magnitude responses. Notably, CD8 T cell responses induced by polymer-TLR-7/8a were dependent on CCR2+ monocytes and IL-12, whereas responses by a small molecule TLR-7/8a that unexpectedly persisted in vaccine-site draining lymph nodes (T1/2 = 15 h) had less dependence on monocytes and IL-12 but required Type I IFNs. This study shows how modular properties of synthetic adjuvants can be chemically programmed to alter immunity in vivo through distinct immunological mechanisms.


Assuntos
Adjuvantes Imunológicos/química , Linfócitos T CD8-Positivos/efeitos dos fármacos , Ativação Linfocitária , Micelas , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Feminino , Hidrodinâmica , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica
10.
PLoS Pathog ; 13(6): e1006462, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640917

RESUMO

Hantaviruses infect humans via inhalation of virus-contaminated rodent excreta. Infection can cause severe disease with up to 40% mortality depending on the viral strain. The virus primarily targets the vascular endothelium without direct cytopathic effects. Instead, exaggerated immune responses may inadvertently contribute to disease development. Mononuclear phagocytes (MNPs), including monocytes and dendritic cells (DCs), orchestrate the adaptive immune responses. Since hantaviruses are transmitted via inhalation, studying immunological events in the airways is of importance to understand the processes leading to immunopathogenesis. Here, we studied 17 patients infected with Puumala virus that causes a mild form of hemorrhagic fever with renal syndrome (HFRS). Bronchial biopsies as well as longitudinal blood draws were obtained from the patients. During the acute stage of disease, a significant influx of MNPs expressing HLA-DR, CD11c or CD123 was detected in the patients' bronchial tissue. In parallel, absolute numbers of MNPs were dramatically reduced in peripheral blood, coinciding with viremia. Expression of CCR7 on the remaining MNPs in blood suggested migration to peripheral and/or lymphoid tissues. Numbers of MNPs in blood subsequently normalized during the convalescent phase of the disease when viral RNA was no longer detectable in plasma. Finally, we exposed blood MNPs in vitro to Puumala virus, and demonstrated an induction of CCR7 expression on MNPs. In conclusion, the present study shows a marked redistribution of blood MNPs to the airways during acute hantavirus disease, a process that may underlie the local immune activation and contribute to immunopathogenesis in hantavirus-infected patients.


Assuntos
Endotélio Vascular/virologia , Infecções por Hantavirus/imunologia , Febre Hemorrágica com Síndrome Renal/virologia , Fagócitos/virologia , Síndrome Pulmonar por Hantavirus/imunologia , Síndrome Pulmonar por Hantavirus/virologia , Febre Hemorrágica com Síndrome Renal/imunologia , Humanos , Imunidade Humoral/imunologia , Fagócitos/imunologia , RNA Viral/genética
11.
PLoS One ; 12(6): e0177920, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28591131

RESUMO

Influenza A viruses (IAV) primarily target respiratory epithelial cells, but can also replicate in immune cells, including human dendritic cells (DCs). Super-resolution microscopy provides a novel method of visualizing viral trafficking by overcoming the resolution limit imposed by conventional light microscopy, without the laborious sample preparation of electron microscopy. Using three-color Stimulated Emission Depletion (STED) microscopy, we visualized input IAV nucleoprotein (NP), early and late endosomal compartments (EEA1 and LAMP1 respectively), and HLA-DR (DC membrane/cytosol) by immunofluorescence in human DCs. Surface bound IAV were internalized within 5 min of infection. The association of virus particles with early endosomes peaked at 5 min when 50% of NP+ signals were also EEA1+. Peak association with late endosomes occurred at 15 min when 60% of NP+ signals were LAMP1+. At 30 min of infection, the majority of NP signals were in the nucleus. Our findings illustrate that early IAV trafficking in human DCs proceeds via the classical endocytic pathway.


Assuntos
Células Dendríticas/ultraestrutura , Interações Hospedeiro-Patógeno , Vírus da Influenza A/ultraestrutura , Vírion/ultraestrutura , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Endossomos/virologia , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Antígenos HLA-DR/isolamento & purificação , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Proteínas de Membrana Lisossomal/isolamento & purificação , Microscopia , Proteínas do Nucleocapsídeo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Transporte Vesicular/isolamento & purificação , Proteínas do Core Viral/genética , Proteínas do Core Viral/isolamento & purificação , Vírion/genética , Vírion/patogenicidade , Replicação Viral/genética
12.
Front Immunol ; 8: 499, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507549

RESUMO

The lungs are vulnerable to attack by respiratory insults such as toxins, allergens, and pathogens, given their continuous exposure to the air we breathe. Our immune system has evolved to provide protection against an array of potential threats without causing collateral damage to the lung tissue. In order to swiftly detect invading pathogens, monocytes, macrophages, and dendritic cells (DCs)-together termed mononuclear phagocytes (MNPs)-line the respiratory tract with the key task of surveying the lung microenvironment in order to discriminate between harmless and harmful antigens and initiate immune responses when necessary. Each cell type excels at specific tasks: monocytes produce large amounts of cytokines, macrophages are highly phagocytic, whereas DCs excel at activating naïve T cells. Extensive studies in murine models have established a division of labor between the different populations of MNPs at steady state and during infection or inflammation. However, a translation of important findings in mice is only beginning to be explored in humans, given the challenge of working with rare cells in inaccessible human tissues. Important progress has been made in recent years on the phenotype and function of human lung MNPs. In addition to a substantial population of alveolar macrophages, three subsets of DCs have been identified in the human airways at steady state. More recently, monocyte-derived cells have also been described in healthy human lungs. Depending on the source of samples, such as lung tissue resections or bronchoalveolar lavage, the specific subsets of MNPs recovered may differ. This review provides an update on existing studies investigating human respiratory MNP populations during health and disease. Often, inflammatory MNPs are found to accumulate in the lungs of patients with pulmonary conditions. In respiratory infections or inflammatory diseases, this may contribute to disease severity, but in cancer patients this may improve clinical outcomes. By expanding on this knowledge, specific lung MNPs may be targeted or modulated in order to attain favorable responses that can improve preventive or treatment strategies against respiratory infections, lung cancer, or lung inflammatory diseases.

13.
J Vis Exp ; (119)2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28190064

RESUMO

The lungs are constantly exposed to the external environment, which in addition to harmless particles, also contains pathogens, allergens, and toxins. In order to maintain tolerance or to induce an immune response, the immune system must appropriately handle inhaled antigens. Lung dendritic cells (DCs) are essential in maintaining a delicate balance to initiate immunity when required without causing collateral damage to the lungs due to an exaggerated inflammatory response. While there is a detailed understanding of the phenotype and function of immune cells such as DCs in human blood, the knowledge of these cells in less accessible tissues, such as the lungs, is much more limited, since studies of human lung tissue samples, especially from healthy individuals, are scarce. This work presents a strategy to generate detailed spatial and phenotypic characterization of lung tissue resident DCs in healthy humans that undergo a bronchoscopy for the sampling of endobronchial biopsies. Several small biopsies can be collected from each individual and can be subsequently embedded for ultrafine sectioning or enzymatically digested for advanced flow cytometric analysis. The outlined protocols have been optimized to yield maximum information from small tissue samples that, under steady-state conditions, contain only a low frequency of DCs. While the present work focuses on DCs, the methods described can directly be expanded to include other (immune) cells of interest found in mucosal lung tissue. Furthermore, the protocols are also directly applicable to samples obtained from patients suffering from pulmonary diseases where bronchoscopy is part of establishing the diagnosis, such as chronic obstructive pulmonary disease (COPD), sarcoidosis, or lung cancer.


Assuntos
Células Dendríticas/imunologia , Citometria de Fluxo , Imuno-Histoquímica , Imunofenotipagem/métodos , Pulmão/citologia , Biópsia , Broncoscopia , Humanos , Pulmão/imunologia
14.
J Invest Dermatol ; 137(4): 865-873, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28011143

RESUMO

Epidermal Langerhans cells (LCs) are spatially separated from dermal dendritic cells (DCs) in healthy human skin. In active psoriasis, maintained by local production of IL-23 and IL-17, inflammatory DCs infiltrate both skin compartments. Here we show that CCR2+ epidermal DCs (eDCs) were confined to lesional psoriasis and phenotypically distinct from dermal DCs. The eDCs exceeded the number of LCs and displayed high expression of genes involved in neutrophil recruitment and the activation of keratinocytes and T cells. Resident LCs responded to toll-like receptor 4 and toll-like receptor 7/8 activation with increased IL-23 production, whereas eDCs additionally produced IL-1ß together with IL-23 and tumor necrosis factor. Psoriasis typically recur in fixed skin lesions. eDCs were absent from resolved psoriasis. Instead, LCs from anti-tumor necrosis factor-treated lesions retained high IL23A expression and responded to toll-like receptor stimulation by producing IL-23. Our results reveal phenotypic and functional properties of eDCs and resident LCs in different clinical phases of psoriasis, and the capacity of these cells to amplify the epidermal microenvironment through the secretion of IL-17 polarizing cytokines.


Assuntos
Citocinas/metabolismo , Células Dendríticas/citologia , Células de Langerhans/citologia , Psoríase/patologia , Biópsia por Agulha , Diferenciação Celular , Células Dendríticas/ultraestrutura , Células Epidérmicas , Citometria de Fluxo/métodos , Humanos , Imuno-Histoquímica , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Células de Langerhans/ultraestrutura , Microscopia Confocal/métodos , Psoríase/imunologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Valores de Referência , Estudos de Amostragem , Estatísticas não Paramétricas , Receptores Toll-Like/metabolismo
15.
J Immunol ; 196(11): 4498-509, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27183618

RESUMO

Every breath we take contains potentially harmful pathogens or allergens. Dendritic cells (DCs), monocytes, and macrophages are essential in maintaining a delicate balance of initiating immunity without causing collateral damage to the lungs because of an exaggerated inflammatory response. To document the diversity of lung mononuclear phagocytes at steady-state, we performed bronchoscopies on 20 healthy subjects, sampling the proximal and distal airways (bronchial wash and bronchoalveolar lavage, respectively), as well as mucosal tissue (endobronchial biopsies). In addition to a substantial population of alveolar macrophages, we identified subpopulations of monocytes, myeloid DCs (MDCs), and plasmacytoid DCs in the lung mucosa. Intermediate monocytes and MDCs were highly frequent in the airways compared with peripheral blood. Strikingly, the density of mononuclear phagocytes increased upon descending the airways. Monocytes from blood and airways produced 10-fold more proinflammatory cytokines than MDCs upon ex vivo stimulation. However, airway monocytes were less inflammatory than blood monocytes, suggesting a more tolerant nature. The findings of this study establish how to identify human lung mononuclear phagocytes and how they function in normal conditions, so that dysregulations in patients with respiratory diseases can be detected to elucidate their contribution to immunity or pathogenesis.


Assuntos
Inflamação/imunologia , Monócitos/imunologia , Mucosa Respiratória/imunologia , Adolescente , Adulto , Células Dendríticas/imunologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
16.
J Immunol ; 194(9): 4422-30, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25801434

RESUMO

The proinflammatory microenvironment in the respiratory airway induces maturation of both resident and infiltrating dendritic cells (DCs) upon influenza A virus (IAV) infection. This results in upregulation of antiviral pathways as well as modulation of endocytic processes, which affect the susceptibility of DCs to IAV infection. Therefore, it is highly relevant to understand how IAV interacts with and infects mature DCs. To investigate how different subsets of human myeloid DCs (MDCs) involved in tissue inflammation are affected by inflammatory stimulation during IAV infection, we stimulated primary blood MDCs and inflammatory monocyte-derived DCs (MDDCs) with TLR ligands, resulting in maturation. Interestingly, MDDCs but not MDCs were protected against IAV infection after LPS (TLR4) stimulation. In contrast, stimulation with TLR7/8 ligand protected MDCs but not MDDCs from IAV infection. The reduced susceptibility to IAV infection correlated with induction of type I IFNs. We found that differential expression of TLR4, TRIF, and MyD88 in the two MDC subsets regulated the ability of the cells to enter an antiviral state upon maturation. This difference was functionally confirmed using small interfering RNA and inhibitors. Our data show that different human MDC subsets may play distinct roles during IAV infection, as their capacity to induce type I IFNs is dependent on TLR-specific maturation, resulting in differential susceptibility to IAV infection.


Assuntos
Células Dendríticas/metabolismo , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Influenza Humana/metabolismo , Células Mieloides/metabolismo , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/virologia , Técnicas de Silenciamento de Genes , Humanos , Influenza Humana/genética , Interferon Tipo I/biossíntese , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/virologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Poli I-C/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...