Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 171: 116134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219389

RESUMO

Mitragynine is one of the main psychoactive alkaloids in Mitragyna speciosa Korth. (kratom). It has opium-like effects by acting on µ-, δ-, and κ-opioid receptors in the brain. The compound also interacts with other receptors, such as adrenergic and serotonergic receptors and neuronal Ca2+ channels in the central nervous system to have its neuropharmacological effects. Mitragynine has the potential to treat diseases related to neurodegeneration such as Alzheimer's disease and Parkinson's disease, as its modulation on the opioid receptors has been reported extensively. This review aimed to provide an up-to-date and critical overview on the neuropharmacological effects, mechanisms of action, pharmacokinetics and safety of mitragynine as a prospective psychotropic agent. Its multiple neuropharmacological effects on the brain include antinociceptive, anti-inflammatory, antidepressant, sedative, stimulant, cognitive, and anxiolytic activities. The potential of mitragynine to manage opioid withdrawal symptoms related to opioid dependence, its pharmacokinetics and toxic effects were also discussed. The interaction of mitragynine with various receptors in the brain produce diverse neuropharmacological effects, which have beneficial properties in neurological disorders. However, further studies need to be carried out on mitragynine to uncover its complex mechanisms of action, pharmacokinetics, pharmacodynamic profiles, addictive potential, and safe dosage to prevent harmful side effects.


Assuntos
Alcaloides de Triptamina e Secologanina , Síndrome de Abstinência a Substâncias , Humanos , Estudos Prospectivos , Receptores Opioides , Alcaloides de Triptamina e Secologanina/efeitos adversos , Psicotrópicos
2.
Methods Mol Biol ; 2745: 77-90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38060180

RESUMO

Metabolomics can provide diagnostic, prognostic, and therapeutic biomarker profiles of individual patients because a large number of metabolites can be simultaneously measured in biological samples in an unbiased manner. Minor stimuli can result in substantial alterations, making it a valuable target for analysis. Due to the complexity and sensitivity of the metabolome, studies must be devised to maintain consistency, minimize subject-to-subject variation, and maximize information recovery. This effort has been aided by technological advances in experimental design, rodent models, and instrumentation. Proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy of biofluids, such as plasma, urine, and faeces provide the opportunity to identify biomarker change patterns that reflect the physiological or pathological status of an individual patient. Metabolomics has the ultimate potential to be useful in a clinical context, where it could be used to predict treatment response and survival and for early disease diagnosis. During drug treatment, an individual's metabolic status could be monitored and used to predict deleterious effects. Therefore, metabolomics has the potential to improve disease diagnosis, treatment, and follow-up care. In this chapter, we demonstrate how a metabolomics study can be used to diagnose a disease by classifying patients as either healthy or pathological, while accounting for individual variation.


Assuntos
Líquidos Corporais , Metabolômica , Humanos , Metabolômica/métodos , Metaboloma , Líquidos Corporais/metabolismo , Biologia de Sistemas , Biomarcadores/metabolismo
3.
Curr Issues Mol Biol ; 45(11): 8989-9002, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37998741

RESUMO

This study describes the cloning, expression and functional characterization of α-humulene synthase, responsible for the formation of the key aromatic compound α-humulene in agarwood originating from Aquilaria malaccensis. The partial sesquiterpene synthase gene from the transcriptome data of A. malaccensis was utilized for full-length gene isolation via a 3' RACE PCR. The complete gene, denoted as AmDG2, has an open reading frame (ORF) of 1671 bp and encodes for a polypeptide of 556 amino acids. In silico analysis of the protein highlighted several conserved motifs typically found in terpene synthases such as Asp-rich substrate binding (DDxxD), metal-binding residues (NSE/DTE), and cytoplasmic ER retention (RxR) motifs at their respective sites. The AmDG2 was successfully expressed in the E. coli:pET-28a(+) expression vector whereby an expected band of about 64 kDa in size was detected in the SDS-PAGE gel. In vitro enzyme assay using substrate farnesyl pyrophosphate (FPP) revealed that AmDG2 gave rise to two sesquiterpenes: α-humulene (major) and ß-caryophyllene (minor), affirming its identity as α-humulene synthase. On the other hand, protein modeling performed using AlphaFold2 suggested that AmDG2 consists entirely of α-helices with short connecting loops and turns. Meanwhile, molecular docking via AutoDock Vina (Version 1.5.7) predicted that Asp307 and Asp311 act as catalytic residues in the α-humulene synthase. To our knowledge, this is the first comprehensive report on the cloning, expression and functional characterization of α-humulene synthase from agarwood originating from A. malaccensis species. These findings reveal a deeper understanding of the structure and functional properties of the α-humulene synthase and could be utilized for metabolic engineering work in the future.

4.
MethodsX ; 11: 102434, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846354

RESUMO

Polyhydroxyalkanoate (PHA)-producing bacteria represent a powerful synthetic biology chassis for waste bioconversion and bio-upcycling where PHAs can be produced as the final products. In this study, we present a seamless plasmid construction for orthogonal expression of recombinant PET hydrolase (PETase) in model PHA-producing bacteria P. putida and C. necator. To this end, this study described seamless cloning and expression methods utilizing SureVector (SV) system for generating pSV-Ortho-PHA (pSVOP) expression platform in bioengineered P. putida and C. necator. Genetic parts specifically Trc promoter, pBBR1 origin of replication, anchoring proteins and signal sequences were utilized for the transformation of pSVOP-based plasmid in electrocompetent cells and orthogonal expression of PETase in both P. putida and C. necator. Validation steps in confirming functional expression of PETase activity in corresponding PETase-expressing strains were also described to demonstrate seamless and detailed methods in establishing bioengineered P. putida and C. necator as whole-cell biocatalysts tailored for plastic bio-upcycling.•Seamless plasmid construction for orthogonal expression in PHA-producing bacteria.•Step-by-step guide for high-efficiency generation of electrotransformants of P. putida and C. necator.•Adaptable methods for rapid strain development (Design, Build, Test and Learn) for whole-cell biocatalysis.

5.
Mar Drugs ; 21(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37755110

RESUMO

Dinoflagellate Alexandrium minutum Halim is commonly associated with harmful algal blooms (HABs) in tropical marine waters due to its saxitoxin production. However, limited information is available regarding the cellular and metabolic changes of A. minutum in nutrient-deficient environments. To fill this gap, our study aimed to investigate the transcriptomic responses of A. minutum under nitrogen and phosphorus deficiency. The induction of nitrogen and phosphorus deficiency resulted in the identification of 1049 and 763 differently expressed genes (DEGs), respectively. Further analysis using gene set enrichment analysis (GSEA) revealed 702 and 1251 enriched gene ontology (GO) terms associated with nitrogen and phosphorus deficiency, respectively. Our results indicate that in laboratory cultures, nitrogen deficiency primarily affects meiosis, carbohydrate catabolism, ammonium assimilation, ion homeostasis, and protein kinase activity. On the other hand, phosphorus deficiency primarily affects the carbon metabolic response, cellular ion transfer, actin-dependent cell movement, signalling pathways, and protein recycling. Our study provides valuable insights into biological processes and genes regulating A. minutum's response to nutrient deficiencies, furthering our understanding of the ecophysiological response of HABs to environmental change.

6.
Molecules ; 28(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764502

RESUMO

Neuronal models are an important tool in neuroscientific research. Hydrogen peroxide (H2O2), a major risk factor of neuronal oxidative stress, initiates a cascade of neuronal cell death. Polygonum minus Huds, known as 'kesum', is widely used in traditional medicine. P. minus has been reported to exhibit a few medicinal and pharmacological properties. The current study aimed to investigate the neuroprotective effects of P. minus ethanolic extract (PMEE) on H2O2-induced neurotoxicity in SH-SY5Y cells. LC-MS/MS revealed the presence of 28 metabolites in PMEE. Our study showed that the PMEE provided neuroprotection against H2O2-induced oxidative stress by activating the Nrf2/ARE, NF-κB/IκB and MAPK signaling pathways in PMEE pre-treated differentiated SH-SY5Y cells. Meanwhile, the acetylcholine (ACH) level was increased in the oxidative stress-induced treatment group after 4 h of exposure with H2O2. Molecular docking results with acetylcholinesterase (AChE) depicted that quercitrin showed the highest docking score at -9.5 kcal/mol followed by aloe-emodin, afzelin, and citreorosein at -9.4, -9.3 and -9.0 kcal/mol, respectively, compared to the other PMEE's identified compounds, which show lower docking scores. The results indicate that PMEE has neuroprotective effects on SH-SY5Y neuroblastoma cells in vitro. In conclusion, PMEE may aid in reducing oxidative stress as a preventative therapy for neurodegenerative diseases.


Assuntos
Antígenos de Grupos Sanguíneos , Neuroblastoma , Fármacos Neuroprotetores , Polygonum , Humanos , Peróxido de Hidrogênio/toxicidade , Neuroblastoma/tratamento farmacológico , Acetilcolinesterase , Cromatografia Líquida , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Espectrometria de Massas em Tandem , Anticorpos , Etanol
7.
Toxics ; 11(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37624193

RESUMO

Annona muricata is a common plant used in Africa and South America to manage various types of disease. However, there is insufficient toxicological information or published standard available regarding repeated dose animal toxicity data. As part of the safety assessment, we exposed Sprague Dawley rats to an acute oral toxicity of A. muricata. The intent of the current study was to use advanced proton nuclear magnetic resonance (1H NMR) in serum and urinary metabolomics evaluation techniques to provide the in vivo acute toxicological profile of A. muricata leaf ethanol extract in accordance with the Organization for Economic Co-operation and Development's (OECD) 423 guidelines. A single 2000 mg/kg dose of A. muricata leaf ethanol extract was administered to Sprague Dawley rats over an observational period of 14 days. The toxicity evaluation (physical and behavior observation, body weight, renal function test, liver function test and 1H NMR analysis) showed no abnormal toxicity. Histopathological analysis manifested mild changes, i.e., the treated kidney manifested mild hypercellularity of mesangial cells and mild red blood cell congestion. In addition, there was mild hemorrhage into tissue with scattered inflammatory cells and mild dilated central vein with fibrosis in the liver. However, the changes were very mild and not significant which correlate with other analyses conducted in this study (biochemical test and 1H NMR metabolomic analysis). On the other hand, urinary 1H NMR analysis collected on day 15 revealed high similarity on the metabolite variations for both untreated and treated groups. Importantly, the outcomes suggest that A. muricata leaf ethanol extract can be safely consumed at a dose of 2000 mg/kg and the LD50 must be more than 2000 mg/kg.

8.
Sci Rep ; 13(1): 12830, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553472

RESUMO

Grouper culture has been expanding in Malaysia due to the huge demand locally and globally. However, due to infectious diseases such as vibriosis, the fish mortality rate increased, which has affected the production of grouper. Therefore, this study focuses on the metabolic profiling of surviving infected grouper fed with different formulations of fatty acid diets that acted as immunostimulants for the fish to achieve desirable growth and health performance. After a six-week feeding trial and one-week post-bacterial challenge, the surviving infected grouper was sampled for GC-MS analysis. For metabolite extraction, a methanol/chloroform/water (2:2:1.8) extraction method was applied to the immune organs (spleen and liver) of surviving infected grouper. The distribution patterns of metabolites between experimental groups were then analyzed using a metabolomics platform. A total of 50 and 81 metabolites were putatively identified from the spleen and liver samples, respectively. Our further analysis identified glycine, serine, and threonine metabolism, and alanine, aspartate and glutamate metabolism had the most impacted pathways, respectively, in spleen and liver samples from surviving infected grouper. The metabolites that were highly abundant in the spleen found in these pathways were glycine (20.9%), l-threonine (1.0%) and l-serine (0.8%). Meanwhile, in the liver l-glutamine (1.8%) and aspartic acid (0.6%) were found to be highly abundant. Interestingly, among the fish diet groups, grouper fed with oleic acid diet produced more metabolites with a higher percent area compared to the control diets. The results obtained from this study elucidate the use of oleic acid as an immunostimulant in fish feed formulation affects more various immune-related metabolites than other formulated feed diets for vibriosis infected grouper.


Assuntos
Bass , Doenças dos Peixes , Vibrioses , Vibrio vulnificus , Animais , Ácido Oleico , Dieta , Vibrioses/veterinária , Ração Animal/análise
9.
Mol Biol Rep ; 50(6): 5283-5294, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148413

RESUMO

BACKGROUND: Chalcone isomerase (CHI; EC 5.5.1.6) is one of the key enzymes in the flavonoid biosynthetic pathway that is responsible for the intramolecular cyclization of chalcones into specific 2S-flavanones. METHODS AND RESULTS: In this study, the open reading frame (ORF) of CHI was successfully isolated from the cDNA of Polygonum minus at 711-bp long, encoding for 236 amino acid residues, with a predicted molecular weight of 25.4 kDa. Multiple sequence alignment and phylogenetic analysis revealed that the conserved residues (Thr50, Tyr108, Asn115, and Ser192) in the cleft of CHI enzyme group active site are present in PmCHI protein sequence and classified as type I. PmCHI comprises more hydrophobic residues without a signal peptide and transmembrane helices. The three-dimensional (3D) structure of PmCHI predicted through homology modeling was validated by Ramachandran plot and Verify3D, with values within the acceptable range of a good model. PmCHI was cloned into pET-28b(+) plasmid, expressed in Escherichia coli BL21(DE3) at 16 °C and partially purified. CONCLUSION: These findings contribute to a deeper understanding of the PmCHI protein and its potential for further characterization of its functional properties in the flavonoid biosynthetic pathway.


Assuntos
Polygonum , Polygonum/genética , Polygonum/metabolismo , Filogenia , Clonagem Molecular , Flavonoides/metabolismo
10.
Nanoethics ; 17(1): 1, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008389

RESUMO

With the advent of synthetic biology, scientists are increasingly relying on digital sequence information, instead of physical genetic resources. This article examines the potential impact of this shift on the access and benefit-sharing (ABS) regime of the Convention on Biological Diversity (CBD) and the Nagoya Protocol. These treaties require benefit-sharing with the owners of genetic resources. However, whether "genetic resources" include digital sequence information is unsettled. The CBD conceives genetic resources as genetic material containing functional units of heredity. "Material" implies tangibility, and for some scholars, "functional units of heredity," undefined in both treaties, mean full-coding sequences. This article argues that digital sequence information obtained from physical genetic resources, full-coding or not, should be treated as genetic resources. Literal construction of the CBD risks eroding its usefulness and the ABS regime. This is because through bioinformatics, sequence information can easily be obtained from genetic resources for utilization, without physically moving them or concluding ABS agreement with owners. The CBD must evolve with scientific progress also because sequence functionality depends on the state of knowledge. These arguments are vindicated by domestic ABS laws equating genetic information with genetic resources; Nagoya Protocol provisions deeming research exploiting the genetic composition of genetic resources as utilization of genetic resources; and CBD provisions requiring the sharing of benefits from the utilization of genetic resources. Moreover, treaty interpretation and case law demand that generic, scientific terms, such as "genetic resources" and "functional units of heredity" be interpreted in an evolutionary manner to capture scientific developments.

11.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902038

RESUMO

Wounds are considered to be a serious problem that affects the healthcare sector in many countries, primarily due to diabetes and obesity. Wounds become worse because of unhealthy lifestyles and habits. Wound healing is a complicated physiological process that is essential for restoring the epithelial barrier after an injury. Numerous studies have reported that flavonoids possess wound-healing properties due to their well-acclaimed anti-inflammatory, angiogenesis, re-epithelialization, and antioxidant effects. They have been shown to be able to act on the wound-healing process via expression of biomarkers respective to the pathways that mainly include Wnt/ß-catenin, Hippo, Transforming Growth Factor-beta (TGF-ß), Hedgehog, c-Jun N-Terminal Kinase (JNK), NF-E2-related factor 2/antioxidant responsive element (Nrf2/ARE), Nuclear Factor Kappa B (NF-κB), MAPK/ERK, Ras/Raf/MEK/ERK, phosphatidylinositol 3-kinase (PI3K)/Akt, Nitric oxide (NO) pathways, etc. Hence, we have compiled existing evidence on the manipulation of flavonoids towards achieving skin wound healing, together with current limitations and future perspectives in support of these polyphenolic compounds as safe wound-healing agents, in this review.


Assuntos
Flavonoides , Fosfatidilinositol 3-Quinases , Cicatrização , Flavonoides/farmacologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Humanos
12.
PLoS One ; 18(3): e0283147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36943850

RESUMO

The fresh leaves of Mitragyna speciosa (Korth.) Havil. have been traditionally consumed for centuries in Southeast Asia for its healing properties. Although the alkaloids of M. speciosa have been studied since the 1920s, comparative and systematic studies of metabolite composition based on different leaf maturity levels are still lacking. This study assessed the secondary metabolite composition in two different leaf stages (young and mature) of M. speciosa, using an untargeted liquid chromatography-electrospray ionisation-time-of-flight-mass spectrometry (LC-ESI-TOF-MS) metabolite profiling. The results revealed 86 putatively annotated metabolite features (RT:m/z value) comprising 63 alkaloids, 10 flavonoids, 6 terpenoids, 3 phenylpropanoids, and 1 of each carboxylic acid, glucoside, phenol, and phenolic aldehyde. The alkaloid features were further categorised into 14 subclasses, i.e., the most abundant class of secondary metabolites identified. As per previous reports, indole alkaloids are the most abundant alkaloid subclass in M. speciosa. The result of multivariate analysis (MVA) using principal component analysis (PCA) showed a clear separation of 92.8% between the young and mature leaf samples, indicating a high variance in metabolite levels between them. Akuammidine, alstonine, tryptamine, and yohimbine were tentatively identified among the many new alkaloids reported in this study, depicting the diverse biological activities of M. speciosa. Besides delving into the knowledge of metabolite distribution in different leaf stages, these findings have extended the current alkaloid repository of M. speciosa for a better understanding of its pharmaceutical potential.


Assuntos
Mitragyna , Alcaloides de Triptamina e Secologanina , Extratos Vegetais/química , Mitragyna/química , Alcaloides Indólicos/análise , Folhas de Planta/metabolismo , Metabolômica
13.
Life (Basel) ; 13(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36836708

RESUMO

Plants have played an important role over the centuries in providing products that have been used to help combat ailments and diseases. Many products originating from fresh, dried-plant materials, or extracts are utilized as community remedies in traditional practices or even in modern medicine. The Annonaceae family contains different types of bioactive chemical properties, such as alkaloids, acetogenins, flavonoids, terpenes, and essential oil, meaning the plants in this family are potential therapeutic agents. Belonging to the Annonaceae family, Annona muricata Linn. has recently attracted the attention of scientists for its medicinal value. It has been utilized as a medicinal remedy since ancient times to treat and improve various diseases, for example, diabetes mellitus, hypertension, cancer, and bacterial infections. This review, therefore, highlights the important characteristic and therapeutic effect of A. muricata along with future perspectives on its hypoglycemic effect. The most-common name is soursop, referring to its sour and sweet flavors, while in Malaysia, this tree is commonly called 'durian belanda'. Furthermore, A. muricata contains a high content of phenolic compounds in the roots and leaves. In vitro and in vivo studies have shown that A. muricata has the pharmacological effects of anti-cancer, anti-microbial, antioxidant, anti-ulcer, anti-diabetic, anti-hypertensive, and wound healing. With regard to its anti-diabetic effect, mechanisms of inhibiting glucose absorption via α-glucosidase and α-amylase activity inhibition, increasing glucose tolerance and glucose uptake by peripheral tissues, and stimulating insulin release or acting like insulin were deeply discussed. There is still a significant research gap, and future studies are required to conduct detailed investigations and gain a better molecular understanding of A. muricata's anti-diabetic potential, especially by using the metabolomics approach.

14.
Biology (Basel) ; 11(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36358301

RESUMO

(1) Background: Quorum sensing (QS) is the chemical communication between bacteria that sense chemical signals in the bacterial population to control phenotypic changes through the regulation of gene expression. The inhibition of QS has various potential applications, particularly in the prevention of bacterial infection. QS can be inhibited by targeting the LuxP, a periplasmic receptor protein that is involved in the sensing of the QS signaling molecule known as the autoinducer 2 (AI-2). The sensing of AI-2 by LuxP transduces the chemical information through the inner membrane sensor kinase LuxQ protein and activates the QS cascade. (2) Methods: An in silico approach was applied to design DNA aptamers against LuxP in this study. A method combining molecular docking and molecular dynamics simulations was used to select the oligonucleotides that bind to LuxP, which were then further characterized using isothermal titration calorimetry. Subsequently, the bioactivity of the selected aptamer was examined through comparative transcriptome analysis. (3) Results: Two aptamer candidates were identified from the ITC, which have the lowest dissociation constants (Kd) of 0.2 and 0.5 micromolar. The aptamer with the lowest Kd demonstrated QS suppression and down-regulated the flagellar-assembly-related gene expression. (4) Conclusions: This study developed an in silico approach to design an aptamer that possesses anti-QS properties.

15.
Biology (Basel) ; 11(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36138767

RESUMO

Aquaculture has been expanding in Malaysia due to the increased demand for fish products. In addition, aquaculture faces challenges in maintaining feed suitability in support of the global growth of fish production. Therefore, improvements in diet formulation are necessary to achieve the optimal requirements and attain a desirable growth efficiency and health performance in fish. Seven weeks of study were conducted to compare the equal amounts of different fatty acids (2%) (oleic acid, stearic acid, palmitic acid, and behenic acid) on the survival, the growth, and the immune response of hybrid grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) against V. vulnificus. After six weeks of the feeding trial, fish were challenged with V. vulnificus for 30 min before continuing on the same feeding regime for the next seven days (post-bacterial challenge). Fish supplemented with dietary oleic acid showed significantly (p < 0.05) enhanced immune responses, i.e., lysozyme, respiratory burst, and phagocytic activities compared to the control diet group for both pre-and post-bacterial challenges. Following the Vibrio challenge, no significant effects of supplemented fatty acid diets on survival rate were observed, although dietary oleic acid demonstrated the highest 63.3% survival rate compared to only 43.3% of the control diet group. In addition, there were no significant effects (p > 0.05) on specific growth rate (SGR), white blood cell (WBC), and red blood cell (RBC) counts among all experimental diets. The results from this study suggest that among the tested dietary fatty acids, the oleic acid diet showed promising results in the form of elevated immune responses and increased disease resistance of the hybrid grouper fingerlings challenged with V. vulnificus.

16.
3 Biotech ; 12(9): 206, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35935547

RESUMO

Epinephelus fuscoguttatus is economically crucial to various Southeast Asia countries where they are reared in fish farms to meet the demand for supply. However, a systemic infectious disease known as vibriosis has steadily and extensively affected the fish farming industry. The disease is caused by Vibrio spp., which are pathogenic gram-negative bacteria. This study focused on understanding the host's metabolic adaptation against Vibrio vulnificus infection, which features a survival phenotype, by profiling the metabolites in grouper fingerlings that survived the experimental infection. Mapping of the pathways is crucial to explain the roles of metabolites in fish immunity. A solvent extraction method was used on the grouper's immune organs (gills, liver and spleen) prior to Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (LC-qTOF-MS) analysis. The metabolites identified in fingerlings that survived experimental infections were mostly amino acids (primary metabolites). Glutamine (0.44%), alanine (0.68%), phenylalanine (2.63%) and tyrosine (2.60%) were highly abundant in survived-infected gills. Aspartic acid (13.57%) and leucine (4.01%) were highly abundant in the livers of the survived-infected fish and lysine was highly abundant in both gills (2.94%) and liver (3.64%) of the survived-infected fish. Subsequent bioinformatics analysis revealed the involvement of the identified functional amino acids in various immune-related pathways. The current findings facilitate the comprehension of the metabolic adaptation of grouper fingerlings that exhibited a survival phenotype against Vibrio infection. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03269-1.

17.
Plants (Basel) ; 11(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893648

RESUMO

The genus Vitex is also known as a chaste tree, in which it is a large shrub native to the tropical and subtropical regions of the world. A diverse range of species is distributed throughout Southern Europe, the Mediterranean, and Central Asia. The Vitex tree, including its leaves and fruits, has been used for herbal remedies in the form of pastes, decoctions, and dried fruits since ancient times. This article aimed to prepare a comprehensive review of traditional uses and secondary metabolites derived from Vitex sp., including the chemical compounds, biological activities, application of Vitex in human clinical trials, toxicology and safety, marketed products, and patents. The scientific findings were obtained using a number of search engines and databases, including Google Scholar, PMC, and ScienceDirect. Vitex species are well known in pharmacology to have medicinal values, such as anti-inflammatory, antibacterial, antifungal, antimicrobial, antioxidant, and anticancer properties. Previous studies reported that some species are proven to be effective in treating diseases, such as diabetes, and improving female health. A total of 161 compounds from different Vitex species are reported, covering the literature from 1982 to 2022. A chemical analysis report of various studies identified that Vitex exhibited a wide range of phytoconstituents, such as iridoid, diterpenoid, ecdysteroid, and flavonoid and phenolic compounds. Apart from that, the review will also discuss the application of Vitex in human clinical trials, toxicology and safety, marketed products, and patents of the genus. While the extracts of the genus have been made into many commercial products, including supplements and essential oils, most of them are made to be used by women to improve menstrual conditions and relieve premenstrual syndrome. Among the species, Vitex agnus-castus L. is the only one that has been reported to undergo clinical trials, mainly related to the use of the genus for the treatment of mastalgia, menstrual bleeding problems, amenorrhea, menorrhagia, luteal insufficiency, and premenstrual syndrome. Overall, the review addresses recent therapeutic breakthroughs and identifies research gaps that should be explored for prospective research work.

18.
Plants (Basel) ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616187

RESUMO

Polygonumins B, C and D, derivative compounds of polygonumins A, were isolated from the stem of Polygonum minus. Based on NMR results, the structure of polygonumins derivatives is comprised of four phenylpropanoid units and a sucrose unit, with a similar structure to polygonumins A. However, the structural differences between polygonumins B (1), C (2) and D (3) can be distinguished based on the existence of methoxy, ethanoyl and hydroxyl groups and protons which bind to C-4, C-4' and C-3″. Interestingly, these bioactive compounds showed various medicinal properties based on our investigation on antioxidant, anticholinesterase and anti-HIV-1 protease activities. The IC50 value of DPPH and ABTS (antioxidant activities) was in the following descending order: polygonumins B > polygonumins C > polygonumins A > polygonumins D. In addition, almost similar pattern of antioxidant activity was observed for anti-acetylcholinesterase activity based on its IC50 value in descending order: polygonumins B > polygonumins C > polygonumins D > polygonumins A. On the other hand, polygonumins C and D showed inhibition of HIV-1 protease activity more than the positive control, pepstatin A. Finally, molecular docking studies on AChE and BChE proteins were carried out in order to gain insight into the mode of interactions between these compounds and the active residues for both enzymes. These remarkable findings indicate that these compounds have potential to be developed as targeted drugs for Alzheimer's disease or as anti-HIV drugs.

19.
PLoS One ; 16(12): e0262029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972183

RESUMO

Various phenolic compounds have been screened against Ganoderma boninense, the fungal pathogen causing basal stem rot in oil palms. In this study, we focused on the effects of salicylic acid (SA) on the growth of three G. boninense isolates with different levels of aggressiveness. In addition, study on untargeted metabolite profiling was conducted to investigate the metabolomic responses of G. boninense towards salicylic acid. The inhibitory effects of salicylic acid were both concentration- (P < 0.001) and isolate-dependent (P < 0.001). Also, growth-promoting effect was observed in one of the isolates at low concentrations of salicylic acid where it could have been utilized by G. boninense as a source of carbon and energy. Besides, adaptation towards salicylic acid treatment was evident in this study for all isolates, particularly at high concentrations. In other words, inhibitory effect of salicylic acid treatment on the fungal growth declined over time. In terms of metabolomics response to salicylic acid treatment, G. boninense produced several metabolites such as coumarin and azatyrosine, which suggests that salicylic acid modulates the developmental switch in G. boninense towards the defense mode for its survival. Furthermore, the liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis showed that the growth of G. boninense on potato dextrose agar involved at least four metabolic pathways: amino acid metabolism, lipid pathway, tryptophan pathway and phenylalanine pathway. Overall, there were 17 metabolites that contributed to treatment separation, each with P<0.005. The release of several antimicrobial metabolites such as eudistomin I may enhance G. boninense's competitiveness against other microorganisms during colonisation. Our findings demonstrated the metabolic versatility of G. boninense towards changes in carbon sources and stress factors. G. boninense was shown to be capable of responding to salicylic acid treatment by switching its developmental stage.


Assuntos
Arecaceae/microbiologia , Ganoderma/metabolismo , Ácido Salicílico/metabolismo , Alanina/análogos & derivados , Alanina/química , Carboidratos/química , Carbono/química , Cromatografia Líquida , Análise por Conglomerados , Cumarínicos/química , Meios de Cultura , Técnicas In Vitro , Íons , Lipídeos/química , Espectrometria de Massas , Melaninas/química , Fenóis/farmacologia , Fenilalanina/química , Doenças das Plantas/microbiologia , Raízes de Plantas/metabolismo , Ácido Salicílico/química , Triptofano/química
20.
Biology (Basel) ; 10(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34827079

RESUMO

Aquaculture is an important industry globally as it remains one of the significant alternatives of animal protein source supplies for humankind. Yet, the progression of this industry is being dampened by the increasing rate of fish mortality, mainly the outbreak of infectious diseases. Consequently, the regress in aquaculture ultimately results in the economy of multiple countries being affected due to the decline of product yields and marketability. By 2025, aquaculture is expected to contribute approximately 57% of fish consumption worldwide. Without a strategic approach to curb infectious diseases, the increasing demands of the aquaculture industry may not be sustainable and hence contributing to the over-fishing of wild fish. Recently, a new holistic approach that utilizes multi-omics platforms including transcriptomics, proteomics, and metabolomics is unraveling the intricate molecular mechanisms of host-pathogen interaction. This approach aims to provide a better understanding of how to improve the resistance of host species. However, no comprehensive review has been published on multi-omics strategies in deciphering fish disease etiology and molecular regulation. Most publications have only covered particular omics and no constructive reviews on various omics findings across fish species, particularly on their immune systems, have been described elsewhere. Our previous publication reviewed the integration of omics application for understanding the mechanism of fish immune response due to microbial infection. Hence, this review provides a thorough compilation of current advancements in omics strategies for fish disease management in the aquaculture industry. The discovery of biomarkers in various fish diseases and their potential advancement to complement the recent progress in combatting fish disease is also discussed in this review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...