Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 649: 123663, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38061501

RESUMO

Invasive pulmonary aspergillosis (IPA) is the most devastating Aspergillus-related lung disease. Voriconazole (VRZ) is the first-line treatment against IPA. Despite availability in oral and parenteral dosage forms, risks of systemic toxicity dictate alternative pulmonary administration. Inspired by natural lung surfactants, dipalmitoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DPPC/DMPG) surface-modified lipid nanoparticles (LNPs) were scrutinized for pulmonary administration. DPPC/DMPG-VRZ-LNPs prepared using ultrasonication/thin film hydration were investigated for colloidal properties over 3-month shelf storage. They were stable with a slight change in entrapment efficiency. They provided a sustained VRZ release over 24 h, with a rapid initial release. In vitro aerosolization indicated higher percentages of VRZ deposited on stages corresponding to secondary bronchi and alveolar ducts. Moreover, intrapulmonary administration maintained high lung VRZ concentration (27 ± 1.14 µg/g) after 6 h. A preclinical study using a cyclophosphamide-induced neutropenic rat model demonstrated a 3-fold reduction in BALF-Galactomannan down to 0.515 ± 0.22 µg/L confirming DPPC/DMPG-VRZ-LNPs potential in hyphal growth inhibition. Histopathological examination of infected/nontreated lung sections exhibited dense fungal load inside alveoli and blood vessels indicating massive tissue and angio-invasiveness. Nevertheless, DPPC/DMPG-VRZ-LNPs-treated animals displayed minimal hyphae with no signs of invasiveness. The developed bioinspired nanoparticles serve as prospective bioactive nanocarrier candidates for pulmonary administration of VRZ in the management of IPA.


Assuntos
Aspergilose Pulmonar Invasiva , Nanopartículas , Ratos , Animais , Voriconazol , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Aspergilose Pulmonar Invasiva/microbiologia , Aspergilose Pulmonar Invasiva/patologia , 1,2-Dipalmitoilfosfatidilcolina , Estudos Prospectivos , Antifúngicos
2.
Biomacromolecules ; 24(5): 2149-2163, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37039769

RESUMO

Despite current progress in the development of targeted therapies for cancer treatment, there is a lack in convenient therapeutics for colorectal cancer (CRC). Lactoferrin nanoparticles (Lf NPs) are a promising drug delivery system in cancer therapy. However, numerous obstacles impede their oral delivery, including instability against stomach enzymes and premature uptake during passage through the small intestine. Microencapsulation of Lf NPs offer a great solution for these obstacles. It can protect Lf NPs and their drug payloads from degradation in the upper gastrointestinal tract (GIT), reduce burst drug release, and improve the release profile of the encapsulated NPs triggered by stimuli in the colon. Here, we developed nanoparticle-in-microparticle delivery systems (NIMDs) for the oral delivery of docetaxel (DTX) and atorvastatin (ATR). The NPs were obtained by dual conjugation of DTX and ATR into the Lf backbone, which was further microencapsulated into calcium-crosslinked microparticles using polysaccharide-protein hybrid copolymers. The NIMDs showed no detectable drug release in the upper GIT compared to NPs. Furthermore, sustained release of the NPs from the NIMDs in rat cecal content was observed. Moreover, the in vivo study demonstrated the superiority of the NIMDs over NPs in CRC treatment by suppressing p-AKT, p-ERK1/2, and NF-κB. This study provides the proof of concept for using NIMDs to enhance the effect of protein NPs in CRC treatment.


Assuntos
Antineoplásicos , Neoplasias do Colo , Nanopartículas , Ratos , Animais , Nanoconjugados , Lactoferrina , Docetaxel , Sistemas de Liberação de Medicamentos , Neoplasias do Colo/tratamento farmacológico , Portadores de Fármacos , Antineoplásicos/farmacologia
3.
Vaccines (Basel) ; 10(6)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35746518

RESUMO

Infections with Pseudomonas aeruginosa (PA) pose a major clinical threat worldwide especially to immunocompromised patients. As a novel vaccine network for many kinds of bacteria, bacterial ghosts (BGs) have recently been introduced. In the present research, using Sponge-Like Reduced Protocol, P. aeruginosa ghosts (PAGs) were prepared to maintain surface antigens and immunogenicity. This is the first study, to our knowledge, on the production of chemically induced well-structured bacterial ghosts for PA using concentrations of different chemicals. The research was carried out using diabetic rats who were orally immunized at two-week intervals with three doses of PAGs. Rats were subsequently challenged either by the oral route or by the model of ulcer infection with PA. In challenged rats, in addition to other immunological parameters, organ bioburden and wound healing were determined, respectively. Examination of the scanning and transmission electron microscope (EM) proved that PAGs with a proper three-dimensional structure were obtained. In contrast to control groups, oral PAGs promoted the generation of agglutinating antibodies, the development of IFN-γ, and the increase in phagocytic activity in vaccinated groups. Antibodies of the elicited PAGs were reactive to PA proteins and lipopolysaccharides. The defense against the PA challenge was observed in PAGs-immunized diabetic rats. The resulting PAGs in orally vaccinated diabetic rats were able to evoke unique humoral and cell-mediated immune responses and to defend them from the threat of skin wound infection. These results have positive implications for future studies on the PA vaccine.

4.
Vaccines (Basel) ; 11(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36679873

RESUMO

BACKGROUND: Pseudomonas aeruginosa (PA) is a Gram-negative pathogen responsible for fatal nosocomial infections worldwide. Iron is essential for Gram-negative bacteria to establish an infection. Therefore, iron acquisition proteins (IAPs) of bacteria are attractive vaccine targets. METHODOLOGY: A "Reverse Vaccinology" approach was employed in the current study. Expression levels of 37 IAPs in various types of PA infections were analyzed in seven previously published studies. The IAP vaccine candidate was selected based on multiple criteria, including a high level of expression, high antigenicity, solubility, and conservation among PA strains, utilizing suitable bioinformatics analysis tools. The selected IAP candidate was recombinantly expressed in Escherichia coli and purified using metal affinity chromatography. It was further evaluated in vivo for protection efficacy. The novel immune adjuvant, naloxone (NAL), was used. RESULTS AND DISCUSSION: HasAp antigen met all the in silico selection criteria, being highly antigenic, soluble, and conserved. In addition, it was the most highly expressed IAP in terms of average fold change compared to control. Although HasAp did excel in the in silico evaluation, subcutaneous immunization with recombinant HasAp alone or recombinant HasAp plus NAL (HasAP-NAL) did not provide the expected protection compared to controls. Immunized mice showed a low IgG2a/IgG1 ratio, indicating a T-helper type 2 (Th2)-oriented immune response that is suboptimal for protection against PA infections. Surprisingly, the bacterial count in livers of both NAL- and HasAp-NAL-immunized mice was significantly lower than the count in the HasAp and saline groups. The same trend was observed in kidneys and lungs obtained from these groups, although the difference was not significant. Such protection could be attributed to the enhancement of innate immunity by NAL. CONCLUSIONS: We provided a detailed in silico analysis of IAPs of PA followed by in vivo evaluation of the best IAP, HasAp. Despite the promising in silico results, HasAp did not provide the anticipated vaccine efficacy. HasAp should be further evaluated as a vaccine candidate through varying the immunization regimens, models of infection, and immunoadjuvants. Combination with other IAPs might also improve vaccination efficacy. We also shed light on several highly expressed promising IAPs whose efficacy as vaccine candidates is worthy of further investigation.

5.
Vaccine ; 39(32): 4471-4480, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34187706

RESUMO

Stenotrophomonas maltophilia is an emerging pathogen that can cause several disease manifestations such as bacteremia, meningitis, respiratory tract infections and others. More seriously, this pathogen has a highly evolving antibiotic resistance profile. Antibiotic misuse is further aggravating the situation by inducing the development of multi- and even pan-resistance. Thus, employing diverse strategies to overcome this increasing antibiotic resistance is of paramount importance. In general, vaccination is one of these strategies that prevents the onset of infection, provides long term protection against infection, and most importantly diminishes the antibiotic consumption, thus, resulting in controlling resistance. Unfortunately, vaccine research concerning S. maltophilia is very scarce in the literature. Ax21 protein is an outer membrane protein implicated in several virulence mechanisms of S. maltophilia such as quorum sensing, biofilm formation, and antibiotic resistance. Our computational analysis of Ax21 revealed its potential immunogenicity. In the current study, Ax21 protein of S. maltophilia was cloned and heterologously expressed in Escherichia coli. Mice were immunized with the purified recombinant antigen using Bacillus Calmette-Guérin(BCG) and incomplete Freund's adjuvant (IFA) as immune-adjuvants. Enzyme-linked immunosorbent assay (ELISA) revealed significant antigen-specific IgG1, IgG2a and total IgG levels in immunized mice which reflected successful immune stimulation. Immunized mice that were challenged with S. maltophilia showed a substantialreduction in bacterial bioburden in lungs, liver, kidneys, and heart. In addition, liver histological examination demonstrated a remarkable decrease in pathological signs such as necrosis, vacuolation, bile duct fibrosis and necrosis, infiltration of inflammatory cells, and hemorrhage. Whole cell ELISA and opsonophagocytic assay confirmed the ability of serum antibodies from immunized mice to bind and facilitate phagocytosis of S. maltophilia, respectively. To our knowledge, this is the first report to demonstrate the vaccine protective efficacy of Ax21 outer membrane protein against S. maltophilia infection.


Assuntos
Infecções por Bactérias Gram-Negativas , Stenotrophomonas maltophilia , Animais , Escherichia coli , Infecções por Bactérias Gram-Negativas/prevenção & controle , Camundongos , Proteínas Recombinantes/genética , Stenotrophomonas maltophilia/genética , Vacinas de Subunidades Antigênicas , Virulência
6.
Int J Med Microbiol ; 310(3): 151415, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32156509

RESUMO

Pseudomonas aeruginosa is an evolving pathogen which can cause serious infections especially to immunocompromised patients. Its high resistance profile to antibiotics results in difficulty, and sometimes impossibility, in treating afflicted patients. Developing an effective vaccine against P. aeruginosa is an important approach to tackle this problem. A similar problematic situation exists for Acinetobacter baumannii. Several vaccine candidates have been investigated up till now but still there is no approved vaccine in the market. One important antigen of P. aeruginosa is the outer membrane protein F (OprF) which functions as a porin with relevant important roles in virulence. Previous studies focused mainly on the C-terminal peptidoglycan binding domain of OprF as a vaccine candidate. In the current study, we have investigated the N-terminal porin domain of OprF as a potential vaccine candidate against P. aeruginosa. Histidine-tagged recombinant N-terminal OprF (amino acid range 25-200; OprF25-200) was overexpressed in Escherichia coli and purified using metal affinity chromatography. Swiss albino mice were immunized with OprF25-200 adjuvanted with Bacillus Calmette-Guérin (BCG) and alum and the immune response was evaluated. Immunized mice developed antigen-specific IgG1 and IgG2a and were protected against challenge by both P. aeruginosa and a clinical isolate of A. baumannii expressing OprF. Serum from OprF25-200-immunized mice showed cross-reactivity with both pathogens using western blotting and whole cell enzyme-linked immunosorbent assay (ELISA). To our knowledge, this is the first report to demonstrate that the N-terminal domain of OprF is sufficiently immunogenic to protect against the two pathogens.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Proteção Cruzada/imunologia , Infecções por Pseudomonas/prevenção & controle , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/administração & dosagem , Vacinas Bacterianas/genética , Escherichia coli , Feminino , Imunoglobulina G/sangue , Camundongos , Pseudomonas aeruginosa , Vacinas Sintéticas/imunologia
7.
Microbes Infect ; 22(3): 127-136, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31585177

RESUMO

Enterococcus faecium is evolving as a multi-resistant pathogen causing infections with high morbidity and mortality. A protective vaccine against E. faecium is lacking up till now. ATP-binding cassette (ABC) transporter proteins have important functions in bacteria to maintain survival and homeostasis. In the present study, we evaluated the basic membrane protein (BMP) family ABC transporter substrate-binding protein, designated herein as BMP, as a potential vaccine candidate against E. faecium. Recombinant BMP of E. faecium was expressed in Escherichia coli, and purified by metal affinity chromatography. Swiss albino mice were immunized with the recombinant BMP combined with Bacillus Calmette-Guérin (BCG) and/or alum as adjuvants. Mice immunized with BMP combined with alternating BCG and alum developed BMP-specific IgG and were protected against E. faecium challenge as evidenced from organ bioburden and histopathological examination. Furthermore, serum from immunized mice showed enhanced opsonophagocytic activity and protected mice against E. faecium challenge by passive immunization. Bioinformatic analysis revealed appreciable degrees of homology between E. faecium BMP and proteins from other pathogens which suggests BMP could be a useful vaccine against multiple pathogens. To our knowledge, this is the first report of in-vivo evaluation of BMP as a potential vaccine candidate against E. faecium.


Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Anticorpos Antibacterianos/sangue , Infecções por Bactérias Gram-Positivas/prevenção & controle , Imunização Passiva , Proteínas de Membrana/imunologia , Transportadores de Cassetes de Ligação de ATP/administração & dosagem , Adjuvantes Imunológicos , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Enterococcus faecium/patogenicidade , Escherichia coli , Feminino , Proteínas de Membrana/administração & dosagem , Camundongos , Fagocitose , Proteínas Recombinantes/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
8.
Microb Pathog ; 131: 181-185, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30978430

RESUMO

Pseudomonas aeruginosa is a notorious pathogen with increasing multi-drug resistance. This situation makes it urgent to develop a prophylactic vaccine against this pathogen. Different virulence factors play a crucial role in P. aeruginosa infection. This study focused on evaluation of the iron acquisition protein HitA as a potential vaccine candidate against P. aeruginosa in a murine infection model. The recombinant ferric iron-binding periplasmic protein HitA was overexpressed in Escherichia coli and was purified using metal affinity chromatography. The purified antigen was administered to mice in combination with Bacillus Calmette-Guérin (BCG) as an adjuvant using different vaccination regimens. Serum samples were tested for IgG1, IgG2a and total IgG antibody responses which were extremely significant. Following challenge of mice with P. aeruginosa, there was a significant reduction in bacterial load in lungs of immunized mice compared to negative control mice. Opsonophagocytic assay supported the previous results. In addition, histopathological examination of livers of challenged mice showed a significant improvement difference between immunized mice and negative control mice in various histopathological parameters. Up to our knowledge, this is the first report that investigates HitA as a potential vaccine antigen. Overall, the results of this study demonstrate the protective effect of HitA recombinant protein and highlight its importance as a promising vaccine candidate against P. aeruginosa infection.


Assuntos
Vacinas Bacterianas/imunologia , Imunização , Ferro/química , Proteínas Periplásmicas/farmacologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/sangue , Carga Bacteriana , Modelos Animais de Doenças , Escherichia coli/genética , Feminino , Imunoglobulina G/sangue , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Necrose , Periplasma , Proteínas Periplásmicas/genética , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/patogenicidade , Proteínas Recombinantes , Vacinação , Vacinas Sintéticas
9.
J Nanobiotechnology ; 17(1): 7, 2019 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-30660179

RESUMO

BACKGROUND: The rationale of this study is to combine the merits of both albumin nanoparticles and quantum dots (QDs) in improved drug tumor accumulation and strong fluorescence imaging capability into one carrier. However, premature drug release from protein nanoparticles and high toxicity of QDs due to heavy metal leakage are among challenging hurdles. Following this platform, we developed cancer nano-theranostics by coupling biocompatible albumin backbone to CdTe QDs and mannose moieties to enhance tumor targeting and reduce QDs toxicity. The chemotherapeutic water soluble drug pemetrexed (PMT) was conjugated via tumor-cleavable bond to the albumin backbone for tumor site-specific release. In combination, the herbal hydrophobic drug resveratrol (RSV) was preformulated as phospholipid complex which enabled its physical encapsulation into albumin nanoparticles. RESULTS: Albumin-QDs theranostics showed enhanced cytotoxicity and internalization into breast cancer cells that could be traced by virtue of their high fluorescence quantum yield and excellent imaging capacity. In vivo, the nanocarriers demonstrated superior anti-tumor effects including reduced tumor volume, increased apoptosis, and inhibited angiogenesis in addition to non-immunogenic response. Moreover, in vivo bioimaging test demonstrated excellent tumor-specific accumulation of targeted nanocarriers via QDs-mediated fluorescence. CONCLUSION: Mannose-grafted strategy and QD-fluorescence capability were beneficial to deliver albumin nanocarriers to tumor tissues and then to release the anticancer drugs for killing cancer cells as well as enabling tumor imaging facility. Overall, we believe albumin-QDs nanoplatform could be a potential nano-theranostic for bioimaging and targeted breast cancer therapy.


Assuntos
Albuminas , Antineoplásicos , Neoplasias da Mama/terapia , Pontos Quânticos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias da Mama/diagnóstico por imagem , Linhagem Celular Tumoral , Terapia Combinada , Quimioterapia Combinada , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Imagem Óptica , Fitoterapia
10.
Nanomedicine (Lond) ; 13(20): 2637-2656, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30338705

RESUMO

AIM: Herein, tumor-targeted quantum dots (QDs)-based theranostic nanocapsules (NCs) coloaded with celecoxib and honokiol were developed. Materials & methodology: The anionic CD44-targeting chondroitin sulfate and cationic low density lipoprotein (LDL)-targeting lactoferrin (LF) were sequentially assembled onto the surface of the positively charged oily core. As an imaging probe, highly fluorescent mercaptopropionic acid-capped cadmium telluride QDs were coupled to LF. RESULTS: In vitro, fluorescence of QDs was quenched (OFF state) due to combined electron/energy transfer-mediated processes involving LF. After intracellular uptake of NCs, fluorescence was restored (ON state), thus enabled tracing their internalization. The NCs demonstrated enhanced cytotoxicity against breast cancer cells as well as superior in vivo antitumor efficacy. CONCLUSION: We propose these multifunctional nanotheranostics for imaging and targeted therapy of breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Lactoferrina/genética , Nanocápsulas/administração & dosagem , Nanomedicina Teranóstica , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Celecoxib/administração & dosagem , Celecoxib/química , Linhagem Celular Tumoral , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Inibidores de Ciclo-Oxigenase 2/química , Feminino , Humanos , Receptores de Hialuronatos/genética , Lipoproteínas LDL/genética , Nanocápsulas/química , Fitoterapia , Pontos Quânticos/química
11.
Nanomedicine (Lond) ; 13(14): 1707-1730, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30073915

RESUMO

Aim: Nanotheranostics consisting of highly-fluorescent quantum dots coupled with gelatin/chondroitin layer-by-layer assembled nanocapsules were developed. Materials & methods: The hydrophobic drugs celecoxib (CXB) and rapamycin (RAP) were co-loaded into the oily core of nanocapsules (NCs) to enable synergistic growth inhibition of breast cancer cells. To overcome the nonspecific binding of actively targeted CS-NCs with normal cells, a matrix metalloproteinase (MMP-2)-degradable cationic gelatin layer was electrostatically deposited onto the surface of the negatively-charged CS-NCs. Results: The prepared nanocarriers displayed strong fluorescence which enabled tracing their internalization into cancer cells. An enhanced cytotoxicity of the NCs against breast cancer cells was demonstrated. In vivo, the nanoplatforms displayed superior antitumor efficacy as well as nonimmunogenic response. Conclusion: Therefore, these multifunctional nanoplatforms could be used as potential cancer theranostics.

12.
Microb Pathog ; 119: 12-18, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29626658

RESUMO

Klebsiella pneumoniae is a Gram-negative bacterium that is increasingly reported as a serious nosocomial and community-acquired pathogen. In the current study, two K. pneumoniae antigens, OmpK17 and OmpK36, as well as their fusion protein cognate F36/17 were investigated as potential vaccine candidates in a murine infection model. Three immunoadjuvants, namely the Gram-positive Enhancer Matrix (GEM) adjuvant, synthetic hemozoin (Hz) adjuvant and incomplete Freund's adjuvant (IFA) were evaluated. Genes of OmpK17 and OmpK36 antigens as well as their fusion protein were cloned in Escherichia coli for recombinant expression. Mice were immunized thrice with the individual recombinant purified antigens adjuvanted with one of the three adjuvants. Two weeks after the last booster, animals were challenged with a lethal dose of K. pneumoniae and immune protection parameters were assessed. Animals immunized with GEM- or Hz-adjuvanted K. pneumoniae antigens did not show significant protection upon bacterial challenge. Animals immunized with subcutaneous IFA-adjuvanted antigens showed the best results with survival percentages of 50, 60 and 50% for groups immunized with OmpK17, OmpK36 and F36/17, respectively. Serum IgG1, rather than IgG2a, antibodies were the most prevalent following vaccination indicating bias towards T helper type 2 (Th2) immune response. Opsonophagocytic assays demonstrated significant percentage killing in case of animals immunized with IFA-adjuvanted antigens. Overall, OmpK17 and OmpK36 are promising vaccine antigens which are worthy of further optimization of the immunization conditions, particularly the used immunoadjuvants, in order to achieve full protection against K. pneumoniae.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Imunização , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/prevenção & controle , Klebsiella pneumoniae/imunologia , Porinas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/genética , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Vacinas Bacterianas/administração & dosagem , Clonagem Molecular , Modelos Animais de Doenças , Escherichia coli/genética , Feminino , Adjuvante de Freund/imunologia , Hemeproteínas/imunologia , Imunoglobulina G/sangue , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/patogenicidade , Lipídeos/imunologia , Camundongos , Porinas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/isolamento & purificação , Taxa de Sobrevida , Vacinação
13.
Int J Nanomedicine ; 11: 5531-5547, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822033

RESUMO

Terconazole (Tr) is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs) to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose.


Assuntos
Hidrogéis/química , Lecitinas/química , Cristais Líquidos , Polietilenoglicóis/química , Polietilenoimina/química , Pele/efeitos dos fármacos , Triazóis/administração & dosagem , Administração Cutânea , Animais , Antifúngicos/química , Candidíase/tratamento farmacológico , Difusão , Concentração de Íons de Hidrogênio , Derivados da Hipromelose/química , Camundongos , Microscopia Eletrônica de Transmissão , Nanogéis , Nanomedicina/métodos , Tamanho da Partícula , Permeabilidade , Reologia , Pele/metabolismo , Absorção Cutânea , Triazóis/química
14.
Hum Vaccin Immunother ; 12(8): 2059-2063, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-26905522

RESUMO

The Gram positive intracellular pathogen Listeria monocytogenes represents a promising vaccine or therapeutic DNA delivery vector that has been successfully administered to humans in clinical trials. However in generating Listeria mutants with therapeutic potential it is important to balance safety attenuation with efficacy. Here we show that L. monocytogenes mutants with a reduced capacity for murine gallbladder replication are capable of stimulating T cell responses in mice and protecting vaccinated animals from secondary challenge. Mutation of L. monocytogenes genes lmo2566 or lmo0598 resulted in significant attenuation in the murine model yet mutants retained a capacity for intracellular growth and stimulation of T cell responses against key Listeria epitopes (LLO91-99 and P60217-225). Importantly the mutants showed a reduced capacity for growth in the gallbladders of vaccinated mice as well as significantly reduced faecal shedding indicating that this approach generates live Listeria-based vector delivery systems with a reduced capacity for the spread of live genetically modified microorganisms into the natural environment.


Assuntos
Vacinas Bacterianas/efeitos adversos , Vacinas Bacterianas/imunologia , Vesícula Biliar/microbiologia , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/patogenicidade , Listeriose/prevenção & controle , Fatores de Virulência/deficiência , Animais , Vacinas Bacterianas/administração & dosagem , Portadores de Fármacos , Listeria monocytogenes/imunologia , Camundongos Endogâmicos BALB C , Prevenção Secundária , Linfócitos T/imunologia
15.
Arch Virol ; 160(8): 1939-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26036563

RESUMO

HCV is a single-stranded RNA virus with a single open reading frame (ORF) that is translated into a polyprotein that is then processed to form 10 viral proteins. An additional eleventh viral protein, the alternative reading frame protein (ARFP), was discovered relatively recently. This protein results from a translational frameshift in the core region during the expression of the viral proteins. Recombinant expression of different forms of ARFP was previously done for HCV genotypes 1 and 2, and more recently, genotype 3. However, none of the previous studies addressed the expression of ARFP of HCV genotype 4a, which is responsible for 80 % of HCV infections in the Middle East and Africa. Moreover, the direct detection of the ARFP antigen in HCV-infected patients was never studied before for any HCV genotype. In the present study, recombinant ARFP derived from HCV genotype 4a was successfully expressed in E. coli and purified using metal affinity chromatography. The recombinant ARFP protein and anti-ARFP antibodies were used for detection of ARFP antigen in patients' sera, employing competitive enzyme-linked immunosorbent assay (ELISA) procedures. Furthermore, the recombinant antigen was also used to detect and quantify anti-ARFP antibodies in HCV-infected Egyptian patients at different stages of pegylated interferon/ribavirin therapy, using an ELISA assay. The ARFP antigen was detectable in 69.4 % of RNA-positive sera, indicating that ARFP antigen is produced during the natural course of HCV infection. In addition, significant levels of anti-ARFP antibodies were present in 41 % of the serum samples tested. The important diagnostic value of the recombinant ARFP antigen was also demonstrated.


Assuntos
Hepacivirus/genética , Anticorpos Anti-Hepatite C/sangue , Hepatite C/virologia , Proteínas do Core Viral/sangue , Adulto , Feminino , Expressão Gênica , Genótipo , Hepacivirus/classificação , Hepacivirus/imunologia , Hepatite C/sangue , Hepatite C/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/sangue , Proteínas Recombinantes/genética , Proteínas do Core Viral/genética
16.
BMC Infect Dis ; 15: 147, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25887456

RESUMO

BACKGROUND: Schistosoma mansoni infection represents a major cause of morbidity and mortality in many areas of the developing world. Effective vaccines against schistosomiasis are not available and disease management relies mainly on treatment with the anthelmintic drug praziquantel. Several promising schistosomal antigens have been evaluated for vaccine efficacy such as Sm14, Sm29 and tetraspanins. However, most investigators examine these promising antigens in animal models individually rather than in properly adjuvanted antigen combinations. METHODS: In the present study, we made a recombinant fusion protein comprised of the promising schistosomal antigens Sm14 and Sm29. The fusion protein, FSm14/29, was administered to Swiss albino mice either unadjuvanted or adjuvanted with polyinosinic-polycytidylic acid adjuvant, poly(I:C). Mice were challenged with S. mansoni cercariae and different parasitological/immunological parameters were assessed seven weeks post-challenge. Data were analyzed using the ANOVA test with post-hoc Tukey-Kramer test. RESULTS: Mice pre-immunized with unadjuvanted or poly(I:C)-adjuvanted fusion protein showed reduction of adult worm burden of 44.7 and 48.4%, respectively. In addition, significant reduction of tissue egg burdens was observed in mice immunized with the fusion protein when compared with the infected saline/adjuvant negative control groups and groups immunized with the individual Sm14 and Sm29 antigens. Light microscope and scanning electron microscope (SEM) investigation of adult worms recovered from FSm14/29-immunized mice revealed appreciable morphological damage and tegumental deformities. Histopathological examination of liver sections of immunized mice demonstrated reduced granulomatous and inflammatory reactions when compared with infected unvaccinated mice or mice immunized with the individual Sm14 and Sm29 antigens. CONCLUSION: The findings presented in this study highlight the importance of the fusion protein FSm14/29 as a potential vaccine candidate that is worthy of further investigation.


Assuntos
Antígenos de Helmintos , Proteínas de Transporte de Ácido Graxo , Proteínas de Helminto , Glicoproteínas de Membrana , Proteínas Recombinantes de Fusão , Esquistossomose mansoni/prevenção & controle , Vacinas , Adjuvantes Imunológicos , Animais , Feminino , Camundongos
17.
Exp Parasitol ; 145: 51-60, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25092439

RESUMO

Schistosomiasis continues to be a serious helminthic disease that is widespread in many regions in the world. Disease management relies mainly on early treatment with praziquantel, nevertheless, re-infection rates can still be high. An effective vaccine against Schistosoma mansoni is still lacking; a situation which hinders the efforts to eradicate the disease worldwide. Most investigators test S. mansoni antigens individually, rather than in combination, in their vaccine trials. A single-antigen vaccine is likely to elicit less protection against schistosomiasis than a multi-antigen vaccine. In the current study, we have selected two promising S. mansoni antigens, Sm14 and Sm29, and investigated their combination as a potential vaccine. Recombinant Sm14 and a truncated form of Sm29, designated TrSm29, were successfully expressed in Escherichiacoli. The two antigens were purified using affinity chromatography and administered to Swiss albino mice individually and in combination. Significant protection against S. mansoni infection was observed in mice immunized with the Sm14/TrSm29 combination in the presence/absence of the immunoadjuvant poly (I:C). The poly (I:C)-adjuvanted combination resulted in 40.3%, 68.2%, and 57.9% reduction in adult worm burden, liver egg burden and intestinal eggs, respectively. Granuloma size and count were also reduced besides improvement of the histopathological picture of livers of immunized mice. This study demonstrates the importance of using multi-antigen vaccines as an effective and simple approach to fulfill enhanced protection against schistosomiasis.


Assuntos
Antígenos de Helmintos/imunologia , Proteínas de Transporte de Ácido Graxo/imunologia , Proteínas de Helminto/imunologia , Glicoproteínas de Membrana/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/prevenção & controle , Vacinas , Animais , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/genética , Biomphalaria , Clonagem Molecular , Cricetinae , Proteínas de Transporte de Ácido Graxo/genética , Feminino , Regulação da Expressão Gênica , Proteínas de Helminto/genética , Imunoglobulina G/sangue , Injeções Intraperitoneais , Intestinos/parasitologia , Fígado/parasitologia , Fígado/patologia , Glicoproteínas de Membrana/genética , Camundongos , Contagem de Ovos de Parasitas , Schistosoma mansoni/genética , Vacinas/administração & dosagem , Vacinas/imunologia , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologia
18.
Methods Mol Biol ; 1157: 263-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24792565

RESUMO

During systemic infection by Listeria monocytogenes the host develops a robust T cell-mediated immune response against the major immunodominant antigens of the pathogen. The enzyme-linked immuno-spot (ELISPOT) test is an accurate and reproducible means of measuring the extent of this T cell response. Here we describe a detailed ELISPOT protocol for measuring an epitope-specific CD8+ T cell-mediated immune response in mice vaccinated with low doses of L. monocytogenes. The basic approach can be easily adapted for the analysis of other vaccination regimes and target epitopes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Técnicas Imunoenzimáticas/métodos , Listeria monocytogenes/imunologia , Listeriose/imunologia , Animais , Antígenos de Bactérias/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Vacinação
19.
Hum Vaccin Immunother ; 10(2): 333-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24196273

RESUMO

The concept of biological containment was developed as a strategy to prevent environmental dissemination of engineered live vaccine or drug delivery vehicles. A mutation in the gene encoding thymidylate synthase (thyA), a key enzyme in the pyrimidine biosynthetic pathway, has previously been shown to limit growth of L. lactis vectors under restrictive conditions. We hypothesized that further mutations in the pyrimidine biosynthetic pathway might enhance the stability and safety of live L. lactis vectors. We show that a double mutation in the genes encoding ThyA and CTP synthase (PyrG) in L. lactis confers double auxotrophy for both thymidine and cytidine. However, the combination of two mutations failed to enhance the biological containment phenotype of the engineered strain. In the absence of thymine/thymidine, the thyA mutant exhibited a strong bactericidal phenotype. However, creation of the double mutant caused the loss of this phenotype, though survival in the mouse GI tract was enhanced. The implications for biological containment of live L. lactis based delivery vectors are discussed.


Assuntos
Contenção de Riscos Biológicos , Portadores de Fármacos , Imunoterapia/métodos , Lactococcus lactis/enzimologia , Lactococcus lactis/crescimento & desenvolvimento , Vacinas/efeitos adversos , Vacinas/imunologia , Animais , Carbono-Nitrogênio Ligases/deficiência , Trato Gastrointestinal/microbiologia , Lactococcus lactis/genética , Camundongos , Timidilato Sintase/deficiência , Vacinas/administração & dosagem , Vacinas/genética
20.
J Med Microbiol ; 62(Pt 2): 185-190, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23105022

RESUMO

Listeria monocytogenes is a Gram-positive intracellular pathogen that is responsible for listeriosis, a potentially fatal, food-borne illness. Due to its cytoplasmic location during infection, this pathogen can mediate a long-lasting cellular immune response, which makes attenuated strains strong candidates for vaccine development. Recently, our group identified and characterized frvA (Fur-regulated virulence factor A), and deletion of this gene resulted in disruption of iron homeostasis and a strong attenuation in virulence. Despite significant attenuation in the mouse infection model, the frvA mutant was capable of intracellular growth in antigen-presenting cells. Indeed, mice immunized with L. monocytogenes ΔfrvA were able to effectively stimulate specific CD8(+) T cells to the listerial epitopes LLO(91-99) and P60(217-225) at levels comparable with L. monocytogenes strain EGDe. Most notably, mice immunized with ΔfrvA then subsequently challenged with the wild-type strain were completely protected from listerial infection. On the basis of these results, we advocate the use of ΔfrvA as a live attenuated listerial vaccine, and propose that this mutant may serve as a platform for the development of a future vaccine delivery vehicle.


Assuntos
Proteínas de Bactérias/genética , Linfócitos T CD8-Positivos/imunologia , Listeria monocytogenes/genética , Listeria monocytogenes/imunologia , Listeriose/imunologia , Animais , Células Apresentadoras de Antígenos/microbiologia , Vacinas Bacterianas/imunologia , Sangue/microbiologia , Epitopos/imunologia , Feminino , Humanos , Ferro/metabolismo , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...