Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708988

RESUMO

Recently, extensive research has been reported on the detection of metal nanoparticles using terahertz waves, due to their potential for efficient and nondestructive detection of chemical and biological samples without labeling. Resonant terahertz nanoantennas can be used to detect a small amount of molecules whose vibrational modes are in the terahertz frequency range with high sensitivity. However, the positioning of target molecules is critical to obtaining a reasonable signal because the field distribution is inhomogeneous over the antenna structure. Here, we combine an optical tweezing technique and terahertz spectroscopy based on nanoplasmonics, resulting in extensive controllable tweezing and sensitive detection at the same time. We observed optical tweezing of a gold nanoparticle and detected it with terahertz waves by using a single bowtie nanoantenna. Furthermore, the calculations confirm that molecular fingerprinting is possible by using our technique. This study will be a prestep of biomolecular detection using gold nanoparticles in terahertz spectroscopy.

2.
Sci Rep ; 11(1): 18498, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531503

RESUMO

We investigate conducting characteristics of biochar derived from the pyrolysis of a paper at terahertz frequencies. Paper is annealed under temperatures ranging from 600 to 1000 °C to modify structural and electrical properties. We experimentally observe that the terahertz conductivity increases above 102 S/m as the annealing temperature increases up to 800 °C. From structural characterization using energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, we confirm that more graphitic biochars are produced in high annealing temperature, in agreement with the improvement of terahertz conductivity. Our results show that biochar can be a highly promising candidate to be used in paper-based devices operating at terahertz frequencies.

3.
Sensors (Basel) ; 21(9)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063265

RESUMO

We report on a prototypical study of the detection of microplastic embedded in table salts by using terahertz time-domain spectroscopy. In the experiment, high-density polyethylene (HDPE) of sizes from 150 to 400 µm are used as a representative microplastic and mixed with table salts. Analyzing terahertz transmittance with an effective medium model, we extract various optical properties such as refractive index, absorption coefficient, and real/imaginary parts of the dielectric constant of the mixture. Consequently, the optical properties exhibit volume-ratio-dependence in 0.1-0.5 THz regimes. Especially, the refractive index and the real part of the dielectric constant possess monotonic frequency dependence, meaning that the quantities can be relevant indicators for the detection of the microplastic in terms of practical applications. Our work proves that terahertz time-domain spectroscopy can pave a way to recognize microplastic mixed with salts and be expanded for detecting various micro-sized particles.

4.
Nano Lett ; 21(10): 4202-4208, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33710897

RESUMO

One of the most straightforward methods to actively control optical functionalities of metamaterials is to apply mechanical strain deforming the geometries. These deformations, however, leave symmetries and topologies largely intact, limiting the multifunctional horizon. Here, we present topology manipulation of metamaterials fabricated on flexible substrates by mechanically closing/opening embedded nanotrenches of various geometries. When an inner bending is applied on the substrate, the nanotrench closes and the accompanying topological change results in abrupt switching of metamaterial functionalities such as resonance, chirality, and polarization selectivity. Closable nanotrenches can be embedded in metamaterials of broadband spectrum, ranging from visible to microwave. The 99.9% extinction performance is robust, enduring more than a thousand bending cycles. Our work provides a wafer-scale platform for active quantum plasmonics and photonic application of subnanometer phenomena.

5.
Nanotechnology ; 31(44): 445206, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32640432

RESUMO

Copper is a low-cost material compared to silver and gold, having high reflectivity in the near infrared spectral range as well as good electrical and thermal conductivity. Its properties make it a good candidate for metal-based low-cost multilayer thin-film devices and optical components. However, its high reflectance in the devices is reduced because copper is easily oxidized. Here, we suggest a copper-based Fabry-Perot optical filter consisting of a thin dielectric layer stacked between two copper films, which can realize low-cost production compared to a conventional silver-based etalon filter. The reduced performance due to the inherent oxidation of the copper surface can be overcome by passivating the copper films with monolayer graphene. The anti-oxidation of copper film is investigated by optical microscopy, x-ray photoelectron spectroscopy, and transmission measurement in UV-vi spectral ranges. Our results show that the graphene coating can be expanded for various metal-based optical devices in terms of anti-corrosion.

6.
Nanotechnology ; 31(3): 035304, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31437819

RESUMO

Arrays of van der Waals gaps were manufactured by synthesizing the vertically aligned graphene layer stacked between two copper (Cu) catalytic films. The Cu-graphene-Cu laminated structure was obtained by directly synthesizing graphene on a patterned Cu film followed by depositing a second copper layer for optical measurements. The synthesis of graphene on the Cu surface was optimized by adjusting the synthesis temperatures and pre-annealing time using plasma enhanced chemical vapor deposition (PECVD). Resonant Raman spectroscopy measurements reveal that graphene can be synthesized on both bulk Cu foil and relatively thin Cu film under the same growth mechanism using PECVD. Structural and optical characterizations of the array of graphene van der Waals gaps were implemented by the transmission electron microscope and terahertz-time domain spectroscopy (THz-TDS). In THz-TDS, the measured THz amplitude transmitted through the graphene van der Waals gap slit array was constant regardless of the gap width determined by the number of graphene layers between the Cu thin films in a single slit. These results imply that the optical dielectric constant of graphene at THz frequencies in the out-of-plane direction is linearly proportional to the gap width. Our results of the manufacturing method can be adopted to investigate mechanical, electrical, and optical properties of other 2D materials such as h-BN, MoS2, and others. Furthermore, metal-graphene-metal structures with vertical orientations can be used in many electronic, optic, and optoelectronic applications.

7.
Sci Rep ; 9(1): 19219, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31822777

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Sci Rep ; 9(1): 15025, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636309

RESUMO

Various material properties change considerably when material is thinned down to nanometer thicknesses. Accordingly, researchers have been trying to obtain homogeneous thin films with nanometer thickness but depositing homogeneous few nanometers thick gold film is challenging as it tends to form islands rather than homogenous film. Recently, studies have revealed that treating the substrate with an organic buffer, (3-mercaptopropyl) trimethoxysilane (MPTMS) enables deposition of ultra-thin gold film having thickness as low as 5 nm. Different aspects of MPTMS treatment for ultra-thin gold films like its effect on the structure and optical properties at visible wavelengths have been investigated. However, the effect of the MPTMS treatment on electrical conductivity of ultra-thin gold film at terahertz frequency remains unexplored. Here, we measure the complex conductivity of nanometer-thick gold films deposited onto an MPTMS-coated silicon substrate using terahertz time-domain spectroscopy. Following the MPTMS treatment of the substrate, the conductivity of the films was found to increase compared to those deposited onto uncoated substrate for gold films having the thickness less than 11 nm. We observed 5-fold enhancement in the conductivity for a 7 nm-thick gold film. We also demonstrate the fabrication of nanoslot-antenna arrays in 8.2-nm-thick gold films. The nanoslot-antenna with MPTMS coating has resonance at around 0.5 THz with an electric field enhancement of 44, whereas the nanoslot-antenna without MPTMS coating does not show resonant properties. Our results demonstrate that gold films deposited onto MPTMS-coated silicon substrates are promising advanced materials for fabricating ultra-thin terahertz plasmonic devices.

9.
Sci Rep ; 9(1): 9749, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278273

RESUMO

We report on improvement of sensitivity for molecular detection utilizing terahertz time domain spectroscopy. Based on confining and enhancing electromagnetic field with metallic nanoslot antennas, we additionally employ monolayer graphene sheet whose edge and hydrophobic surface nature lead to increase detecting performance. Terahertz transmittance in monolayer graphene/metallic nanoslot structure exhibits more unambiguous change after lactose molecules are attached, compared to that in metallic nanoslot structure without monolayer graphene. We attribute the prominent change to that more lactose molecules are guided inside/near the metal gap region due to edge and hydrophobic surface nature of monolayer graphene. This monolayer graphene/metallic nanoslot structure can be expanded in other organic or bio-molecular detection.

10.
Phys Rev Lett ; 120(2): 027202, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29376720

RESUMO

An electromagnon in the magnetoelectric (ME) hexaferrite Ba_{0.5}Sr_{2.5}Co_{2}Fe_{24}O_{41} (Co_{2}Z-type) single crystal is identified by time-domain terahertz (THz) spectroscopy. The associated THz resonance is active on the electric field (E^{ω}) of the THz light parallel to the c axis (∥ [001]), whose spectral weight develops at a markedly high temperature, coinciding with a transverse conical magnetic order below 410 K. The resonance frequency of 1.03 THz at 20 K changes -8.7% and +5.8% under external magnetic field (H) of 2 kOe along [001] and [120], respectively. A model Hamiltonian describing the conical magnetic order elucidates that the dynamical ME effect arises from antiphase motion of spins which are coupled with modulating electric dipoles through the exchange striction mechanism. Moreover, the calculated frequency shift points to the key role of the Dzyaloshinskii-Moriya interaction that is altered by static electric polarization change under different H.

11.
Nano Lett ; 17(10): 6397-6401, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28945438

RESUMO

Most semiconductors have surface dynamics radically different from its bulk counterpart due to surface defect, doping level, and symmetry breaking. Because of the technical challenge of direct observation of the surface carrier dynamics, however, experimental studies have been allowed in severely shrunk structures including nanowires, thin films, or quantum wells where the surface-to-volume ratio is very high. Here, we develop a new type of terahertz (THz) nanoprobing system to investigate the surface dynamics of bulk semiconductors, using metallic nanogap accompanying strong THz field confinement. We observed that carrier lifetimes of InP and GaAs dramatically decrease close to the limit of THz time resolution (∼1 ps) as the gap size decreases down to nanoscale and that they return to their original values once the nanogap patterns are removed. Our THz nanoprobing system will open up pathways toward direct and nondestructive measurements of surface dynamics of bulk semiconductors.

12.
Sci Rep ; 6: 29103, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27357346

RESUMO

Quantum tunnelling becomes inevitable as gap dimensions in metal structures approach the atomic length scale, and light passing through these gaps can be used to examine the quantum processes at optical frequencies. Here, we report on the measurement of the tunnelling current through a 3-Å-wide metal-graphene-metal gap using terahertz time-domain spectroscopy. By analysing the waveforms of the incident and transmitted terahertz pulses, we obtain the tunnelling resistivity and the time evolution of the induced current and electric fields in the gap and show that the ratio of the applied voltage to the tunnelling current is constant, i.e., the gap shows ohmic behaviour for the strength of the incident electric field up to 30 kV/cm. We further show that our method can be extended and applied to different types of nanogap tunnel junctions using suitable equivalent RLC circuits for the corresponding structures by taking an array of ring-shaped nanoslots as an example.

13.
Opt Express ; 24(3): 2065-71, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26906781

RESUMO

We investigate field enhancement inside metal-insulator-metal gaps with asymmetric thicknesses and tapered shapes in the terahertz regime. Finite-difference time-domain simulations were conducted for calculation of field enhancement factor. The calculation indicates that for asymmetric sample, field enhancement increases proportionally with the decrease of the thinner of the two metal film thicknesses surrounding the gap. Concomitantly, angle variation has little effect on the field enhancement if the thickness of the narrowest gap region is fixed. A model based on the capacitor concept is proposed for intuitive understanding of the phenomena.

14.
Phys Rev Lett ; 115(12): 125501, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26431000

RESUMO

Metal-graphene-metal hybrid structures allow angstrom-scale van der Waals gaps, across which electron tunneling occurs. We squeeze terahertz electromagnetic waves through these λ/10 000 000 gaps, accompanied by giant field enhancements. Unprecedented transmission reduction of 97% is achieved with the transient voltage across the gap saturating at 5 V. Electron tunneling facilitated by the transient electric field strongly modifies the gap index, starting a self-limiting process related to the barrier height. Our work enables greater interplay between classical optics and quantum tunneling, and provides optical indices to the van der Waals gaps.

15.
Opt Express ; 23(15): 19047-55, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367567

RESUMO

We theoretically study the transmission reduction of light passing through absorptive molecules embedded in a periodic metal slot array in a near infrared wavelength regime. From the analytically solved transmitted light, we present a simple relation given by the attenuation length of light at the resonance wavelength of the slot antennas with respect to the spectral width of the resonant transmission peak. This relation clearly explains that the control of the transmission reduction even with very low absorptive materials is possible. We investigate also the transmission reduction by absorptive molecules in a real metallic slot antenna array on a dielectric substrate and compare the results with finite difference time domain calculations. In numerical calculations, we demonstrate that the same amount of transmission reduction by a bulk absorptive material can be achieved only with one-hundredth thickness of the same material when it is embedded in an optimized Fano-resonant slot antenna array. Our relation presented in this study can contribute to label-free chemical and biological sensing as an efficient design and performance criterion for periodic slot antenna arrays.

16.
Nano Lett ; 15(10): 6683-8, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26372787

RESUMO

Quantum tunneling in plasmonic nanostructures has presented an interesting aspect of incorporating quantum mechanics into classical optics. However, the study has been limited to the subnanometer gap regime. Here, we newly extend quantum plasmonics to gap widths well over 1 nm by taking advantage of the low-frequency terahertz regime. Enhanced electric fields of up to 5 V/nm induce tunneling of electrons in different arrays of ring-shaped nanoslot antennas of gap widths from 1.5 to 10 nm, which lead to a significant nonlinear transmission decrease. These observations are consistent with theoretical calculations considering terahertz-funneling-induced electron tunneling across the gap.

17.
Opt Express ; 23(11): 14937-45, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072850

RESUMO

We present a new and versatile technique of self-assembly lithography to fabricate a large scale Cadmium selenide quantum dots-silver nanogap metamaterials. After optical and electron microscopic characterizations of the metamaterials, we performed spatially resolved photoluminescence transmission measurements. We obtained highly quenched photoluminescence spectra compared to those from bare quantum dots film. We then quantified the quenching in terms of an average photoluminescence enhancement factor. A finite difference time domain simulation was performed to understand the role of an electric field enhancement in the nanogap over this quenching. Finally, we interpreted the mechanism of the photoluminescence quenching and proposed fabrication method of new metamaterials using our technique.

18.
Opt Express ; 23(4): 4897-907, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836525

RESUMO

We report near-field and far-field measurements of transmission through nanometer-sized gaps at near-infrared frequencies with varying the gap size from 1 nm to 10 nm. In the far-field measurements, we excluded direct transmission on the metal film surface via interferometric method. Kirchhoff integral formalism was used to relate the far-field intensity to the electric field at the nanogaps. In near-field measurements, field enhancement factors of the nanogaps were quantified by measuring transmission of the nanogaps using near-field scanning optical microscopy. All the measurements produce similar field enhancements of about ten, which we put in the context of comparing with the giant field enhancements in the terahertz regime.

19.
ACS Nano ; 8(9): 9089-96, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25137623

RESUMO

We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.

20.
Nano Lett ; 13(4): 1782-6, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23441747

RESUMO

Molecules have extremely small absorption cross sections in the terahertz range even under resonant conditions, which severely limit their detectability, often requiring tens of milligrams. We demonstrate that nanoantennas tailored for the terahertz range resolves the small molecular cross section problem. The extremely asymmetric electromagnetic environment inside the slot antenna, which finds the electric field being enhanced by thousand times with the magnetic field changed little, forces the molecular cross section to be enhanced by >10(3) accompanied by a colossal absorption coefficient of ~170,000 cm(-1). Tens of nanograms of small molecules such as 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and lactose drop-cast over an area of 10 mm(2), with only tens of femtograms of molecules inside the single nanoslot, can readily be detected. Our work enables terahertz sensing of chemical and biological molecules in ultrasmall quantities.


Assuntos
Técnicas Biossensoriais , Radiação Terahertz , Absorção , Eletricidade , Ligação de Hidrogênio , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...