Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(9)2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37761952

RESUMO

The Hessian fly (HF) is an invasive insect that has caused millions of dollars in yield losses to southeastern US wheat farms. Genetic resistance is the most sustainable solution to control HF. However, emerging biotypes are quickly overcoming resistance genes in the southeast; therefore, identifying novel sources of resistance is critical. The resistant line "UGA 111729" and susceptible variety "AGS 2038" were crossbred to generate a population of 225 recombinant inbred lines. This population was phenotyped in the growth chamber (GC) during 2019 and 2021 and in field (F) trials in Georgia during the 2021-2022 growing seasons. Visual scoring was utilized in GC studies. The percentage of infested tillers and number of pupae/larvae per tiller, and infested tiller per sample were measured in studies from 2021 to 2022. Averaging across all traits, a major QTL on chromosome 3D explained 42.27% (GC) and 10.43% (F) phenotypic variance within 9.86 centimorgans (cM). SNP marker IWB65911 was associated with the quantitative trait locus (QTL) peak with logarithm of odds (LOD) values of 14.98 (F) and 62.22 (GC). IWB65911 colocalized with resistance gene H32. KASP marker validation verified that UGA 111729 and KS89WGRC06 express H32. IWB65911 may be used for marker-assisted selection.


Assuntos
Locos de Características Quantitativas , Triticum , Animais , Triticum/genética , Estações do Ano , Fazendas , Hibridização Genética
2.
Front Plant Sci ; 14: 1155670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360709

RESUMO

Dollar spot caused by Clarireedia spp. (formerly Sclerotinia homoeocarpa) is an economically destructive fungal disease of turfgrass that can significantly compromise turf quality, playability, and aesthetic value. Fungicides are frequently used to manage the disease but are costly and potentially unfavorable to the environment. Repeated use of some active ingredients has resulted in reduced efficacy on C. jacksonii causing dollar spot in cool-season turfgrasses in the US. Experiments were conducted to study fungicide sensitivity of Clarireedia spp. as well as to develop alternatives to fungicides against dollar spot on warm-season turfgrass in Georgia. First, 79 isolates of Clarireedia spp. collected across the state were tested on fungicide-amended agar plates for their sensitivity to thiophanate-methyl (benzimidazole) and propiconazole (dimethyl inhibitor). Seventy-seven isolates (97.5%) were sensitive (0.001 to 0.654 µg/mL) and two isolates (2.5%) were found resistant (>1000 µg/mL) to thiophanate-methyl. However, in the case of propiconazole, 27 isolates (34.2%) were sensitive (0.005 to 0.098 µg/mL) while 52 isolates (65.8%) were resistant (0.101 to 3.820 µg/mL). Next, the efficacy of three bio- and six synthetic fungicides and ten different combinations were tested in vitro against C. monteithiana. Seven bio- and synthetic fungicide spray programs comprising Bacillus subtilis QST713 and propiconazole were further tested, either alone or in a tank mix in a reduced rate, on dollar spot infected bermudagrass 'TifTuf' in growth chamber and field environments. These fungicides were selected as they were found to significantly reduce pathogen growth up to 100% on in vitro assays. The most effective spray program in growth chamber assays was 100% B. subtilis QST713 in rotation with 75% B. subtilis QST713 + 25% propiconazole tank mix applied every 14 days. However, the stand-alone application of the biofungicide B. subtilis QST713 every seven days was an effective alternative and equally efficacious as propiconazole, suppressing dollar spot severity and AUDPC up to 75%, while resulting in acceptable turf quality (>7.0) in field experiments. Our study suggests that increased resistance of Clarireedia spp. to benzimidazoles and dimethyl inhibitors warrants continuous surveillance and that biofungicides hold promise to complement synthetic fungicides in an efficacious and environmentally friendly disease management program.

3.
BMC Genomics ; 24(1): 328, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322410

RESUMO

BACKGROUND: Septoria tritici blotch (STB) remains a significant obstacle to durum wheat cultivation on a global scale. This disease remains a challenge for farmers, researchers, and breeders, who are collectively dedicated to reduce its damage and improve wheat resistance. Tunisian durum wheat landraces have been recognized as valuable genetic ressources that exhibit resistance to biotic and abiotic stresses and therefore play a crucial role in breeding program aimed at creating new wheat varieties resistant to fungal diseases as STB, as well as adapted to climate change constraints. RESULTS: A total of 366 local durum wheat accessions were assessed for resistance to two virulent Tunisian isolates of Zymoseptoria tritici Tun06 and TM220 under field conditions. Population structure analysis of the durum wheat accessions, performed with 286 polymorphic SNPs (PIC > 0.3) covering the entire genome, identified three genetic subpopulations (GS1, GS2 and GS3) with 22% of admixed genotypes. Interestingly, all of the resistant genotypes were among GS2 or admixed with GS2. CONCLUSIONS: This study revealed the population structure and the genetic distribution of the resistance to Z. tritici in the Tunisian durum wheat landraces. Accessions grouping pattern reflected the geographical origins of the landraces. We suggested that GS2 accessions were mostly derived from eastern Mediterranean populations, unlike GS1 and GS3 that originated from the west. Resistant GS2 accessions belonged to landraces Taganrog, Sbei glabre, Richi, Mekki, Badri, Jneh Khotifa and Azizi. Furthermore, we suggested that admixture contributed to transmit STB resistance from GS2 resistant landraces to initially susceptible landraces such as Mahmoudi (GS1), but also resulted in the loss of resistance in the case of GS2 susceptible Azizi and Jneh Khotifa accessions.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Triticum/microbiologia , Melhoramento Vegetal , Genética Populacional , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética
4.
Nat Commun ; 14(1): 3694, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344528

RESUMO

Finger millet is a key food security crop widely grown in eastern Africa, India and Nepal. Long considered a 'poor man's crop', finger millet has regained attention over the past decade for its climate resilience and the nutritional qualities of its grain. To bring finger millet breeding into the 21st century, here we present the assembly and annotation of a chromosome-scale reference genome. We show that this ~1.3 million years old allotetraploid has a high level of homoeologous gene retention and lacks subgenome dominance. Population structure is mainly driven by the differential presence of large wild segments in the pericentromeric regions of several chromosomes. Trait mapping, followed by variant analysis of gene candidates, reveals that loss of purple coloration of anthers and stigma is associated with loss-of-function mutations in the finger millet orthologs of the maize R1/B1 and Arabidopsis GL3/EGL3 anthocyanin regulatory genes. Proanthocyanidin production in seed is not affected by these gene knockouts.


Assuntos
Eleusine , Humanos , Lactente , Eleusine/genética , Melhoramento Vegetal , Genoma de Planta/genética , Fenótipo , África Oriental
5.
BMC Genomics ; 23(1): 372, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581550

RESUMO

BACKGROUND: Septoria tritici blotch (STB), caused by Zymoseptoria tritici (Z. tritici), is an important biotic threat to durum wheat in the entire Mediterranean Basin. Although most durum wheat cultivars are susceptible to Z. tritici, research in STB resistance in durum wheat has been limited. RESULTS: In our study, we have identified resistance to a wide array of Z. tritici isolates in the Tunisian durum wheat landrace accession 'Agili39'. Subsequently, a recombinant inbred population was developed and tested under greenhouse conditions at the seedling stage with eight Z. tritici isolates and for five years under field conditions with three Z. tritici isolates. Mapping of quantitative trait loci (QTL) resulted in the identification of two major QTL on chromosome 2B designated as Qstb2B_1 and Qstb2B_2. The Qstb2B_1 QTL was mapped at the seedling and the adult plant stage (highest LOD 33.9, explained variance 61.6%), conferring an effective resistance against five Z. tritici isolates. The Qstb2B_2 conferred adult plant resistance (highest LOD 32.9, explained variance 42%) and has been effective at the field trials against two Z. tritici isolates. The physical positions of the flanking markers linked to Qstb2B_1 and Qstb2B_2 indicate that these two QTL are 5 Mb apart. In addition, we identified two minor QTL on chromosomes 1A (Qstb1A) and chromosome 7A (Qstb7A) (highest LODs 4.6 and 4.0, and explained variances of 16% and 9%, respectively) that were specific to three and one Z. tritici isolates, respectively. All identified QTL were derived from the landrace accession Agili39 that represents a valuable source for STB resistance in durum wheat. CONCLUSION: This study demonstrates that Z. tritici resistance in the 'Agili39' landrace accession is controlled by two minor and two major QTL acting in an additive mode. We also provide evidence that the broad efficacy of the resistance to STB in 'Agili 39' is due to a natural pyramiding of these QTL. A sustainable use of this Z. tritici resistance source and a positive selection of the linked markers to the identified QTL will greatly support effective breeding for Z. tritici resistance in durum wheat.


Assuntos
Resistência à Doença , Triticum , Ascomicetos , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Plântula/genética , Triticum/genética
6.
Phytopathology ; 112(3): 469-480, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34406790

RESUMO

Dollar spot, caused by fungal pathogens Clarireedia spp. (formerly Sclerotinia homoeocarpa), is the most common and widely distributed disease of turfgrass worldwide. It can drastically reduce the quality of turfgrass species and affect their aesthetic value and playability. Management of dollar spot typically includes a costly program of multiple application of fungicides within a growing season. Consequently, there have been reported cases of fungicide resistance in populations of Clarireedia spp. Host resistance could be an important component of dollar spot management; however, this approach has been hampered by the lack of sources of resistance because nearly all known warm- and cool-season turfgrass species are susceptible. With the recent advancement in genome sequencing technologies, studies on pathogen genomics and host-pathogen interactions are emerging with the hope of revealing candidate resistance genes in turfgrass and genes for virulence and pathogenicity in Clarireedia spp. Large-scale screening of turfgrass germplasm and quantitative trait locus (QTL) analysis for dollar spot resistance are important for resistance breeding, but only a handful of such studies have been conducted to date. This review summarizes currently available information on the dollar spot pathosystem, taxonomy, pathogen genomics, host-pathogen interaction, genetics of resistance, and QTL mapping and also provides some thoughts for future research prospects to better manage this disease.


Assuntos
Fungicidas Industriais , Doenças das Plantas , Mapeamento Cromossômico , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética
7.
Theor Appl Genet ; 134(7): 1957-1975, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33760937

RESUMO

KEY MESSAGE: Mapping combined with expression and variant analyses in switchgrass, a crop with complex genetics, identified a cluster of candidate genes for leaf wax in a fast-evolving region of chromosome 7K. Switchgrass (Panicum virgatum L.) is a promising warm-season candidate energy crop. It occurs in two ecotypes, upland and lowland, which vary in a number of phenotypic traits, including leaf glaucousness. To initiate trait mapping, two F2 mapping populations were developed by crossing two different F1 sibs derived from a cross between the tetraploid lowland genotype AP13 and the tetraploid upland genotype VS16, and high-density linkage maps were generated. Quantitative trait locus (QTL) analyses of visually scored leaf glaucousness and of hydrophobicity of the abaxial leaf surface measured using a drop shape analyzer identified highly significant colocalizing QTL on chromosome 7K (Chr07K). Using a multipronged approach, we identified a cluster of genes including Pavir.7KG077009, which encodes a Type III polyketide synthase-like protein, and Pavir.7KG013754 and Pavir.7KG030500, two highly similar genes that encode putative acyl-acyl carrier protein (ACP) thioesterases, as strong candidates underlying the QTL. The lack of homoeologs for any of the three genes on Chr07N, the relatively low level of identity with other switchgrass KCS proteins and thioesterases, as well as the organization of the surrounding region suggest that Pavir.7KG077009 and Pavir.7KG013754/Pavir.7KG030500 were duplicated into a fast-evolving chromosome region, which led to their neofunctionalization. Furthermore, sequence analyses showed all three genes to be absent in the two upland compared to the two lowland accessions analyzed. This study provides an example of and practical guide for trait mapping and candidate gene identification in a complex genetic system by combining QTL mapping, transcriptomics and variant analysis.


Assuntos
Ecótipo , Panicum/genética , Folhas de Planta/química , Locos de Características Quantitativas , Ceras/química , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Ligação Genética , Panicum/química , Fenótipo , Polimorfismo de Nucleotídeo Único , Tetraploidia , Transcriptoma
8.
BMC Genom Data ; 22(1): 3, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33568058

RESUMO

BACKGROUND: Tunisia is considered a secondary center of diversification of durum wheat and has a large number of abandoned old local landraces. An accurate investigation and characterization of the morphological and genetic features of these landraces would allow their rehabilitation and utilization in wheat breeding programs. Here, we investigated a diverse collection of 304 local accessions of durum wheat collected from five regions and three climate stages of central and southern Tunisia. RESULTS: Durum wheat accessions were morphologically characterized using 12 spike- and grain-related traits. A mean Shannon-Weaver index (H') of 0.80 was obtained, indicating high level of polymorphism among accessions. Based on these traits, 11 local landraces including Mahmoudi, Azizi, Jneh Khotifa, Mekki, Biskri, Taganrog, Biada, Badri, Richi, Roussia and Souri were identified. Spike length (H' = 0.98), spike shape (H' = 0.86), grain size (H' = 0.94), grain shape (H' = 0.87) and grain color (H' = 0.86) were the most polymorphic morphological traits. The genetic diversity of these accessions was assessed using 10 simple sequence repeat (SSR) markers, with a polymorphic information content (PIC) of 0.69. Levels of genetic diversity were generally high (I = 0.62; He = 0.35). In addition, population structure analysis revealed 11 genetic groups, which were significantly correlated with the morphological characterization. Analysis of molecular variance (AMOVA) showed high genetic variation within regions (81%) and within genetic groups (41%), reflecting a considerable amount of admixture between landraces. The moderate (19%) and high (59%) levels of genetic variation detected among regions and among genetic groups, respectively, highlighted the selection practices of farmers. Furthermore, Mahmoudi accessions showed significant variation in spike density between central Tunisia (compact spikes) and southern Tunisia (loose spikes with open glume), may indicate an adaptation to high temperature in the south. CONCLUSION: Overall, this study demonstrates the genetic richness of local durum wheat germplasm for better in situ and ex situ conservation and for the subsequent use of these accessions in wheat breeding programs.


Assuntos
Variação Genética , Triticum/genética , Repetições de Microssatélites/genética , Fenótipo , Triticum/classificação , Tunísia
9.
Front Plant Sci ; 11: 1080, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765563

RESUMO

Among the biotic constraints to wheat (Triticum aestivum L.) production, fusarium head blight (FHB), caused by Fusarium graminearum, leaf rust (LR), caused by Puccinia triticina, and stripe rust (SR) caused by Puccinia striiformis are problematic fungal diseases worldwide. Each can significantly reduce grain yield while FHB causes additional food and feed safety concerns due to mycotoxin contamination of grain. Genetic resistance is the most effective and sustainable approach for managing wheat diseases. In the past 20 years, over 500 quantitative trait loci (QTLs) conferring small to moderate effects for the different FHB resistance types have been reported in wheat. Similarly, 79 Lr-genes and more than 200 QTLs and 82 Yr-genes and 140 QTLs have been reported for seedling and adult plant LR and SR resistance, respectively. Most QTLs conferring rust resistance are race-specific generally conforming to a classical gene-for-gene interaction while resistance to FHB exhibits complex polygenic inheritance with several genetic loci contributing to one resistance type. Identification and deployment of additional genes/QTLs associated with FHB and rust resistance can expedite wheat breeding through marker-assisted and/or genomic selection to combine small-effect QTL in the gene pool. LR disease has been present in the southeast United States for decades while SR and FHB have become increasingly problematic in the past 20 years, with FHB arguably due to increased corn acreage in the region. Currently, QTLs on chromosome 1B from Jamestown, 1A, 1B, 2A, 2B, 2D, 4A, 5A, and 6A from W14, Ning7840, Ernie, Bess, Massey, NC-Neuse, and Truman, and 3B (Fhb1) from Sumai 3 for FHB resistance, Lr9, Lr10, Lr18, Lr24, Lr37, LrA2K, and Lr2K38 genes for LR resistance, and Yr17 and YrR61 for SR resistance have been extensively deployed in southeast wheat breeding programs. This review aims to disclose the current status of FHB, LR, and SR diseases, summarize the genetics of resistance and breeding efforts for the deployment of FHB and rust resistance QTL on soft red winter wheat cultivars, and present breeding strategies to achieve sustainable management of these diseases in the southeast US.

10.
Hortic Res ; 7: 30, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140239

RESUMO

Eremurus species, better known as 'Foxtail Lily' or 'Desert Candle', are important worldwide in landscaping and the cut-flower industry. One of the centers of highest diversity of the genus Eremurus is Iran, which has seven species. However, little is known about the genetic diversity within the genus Eremurus. With the advent of genotyping-by-sequencing (GBS), it is possible to develop and employ single nucleotide polymorphism (SNP) markers in a cost-efficient manner in any species, regardless of its ploidy level, genome size or availability of a reference genome. Population structure and phylogeographic analyses of the genus Eremurus in Iran using a minimum of 3002 SNP markers identified either at the genus level or at the species level from GBS data showed longitudinal geographic structuring at the country scale for the genus and for the species E. spectabilis and E. luteus, and at the regional scale for E. olgae. Our analyses furthermore showed a close genetic relatedness between E. olgae and E. stenophyllus to the extent that they should be considered subspecies within an E. olgae/stenophyllus species complex. Their close genetic relatedness may explain why crosses between these two (sub)species have been found in the wild and are exploited extensively as ornamentals. Last, current species identification, while robust, relies on flower morphology. A subset of seven SNPs with species-specific (private) alleles were selected that differentiate the seven Eremurus species. The markers will be especially useful for cultivar protection and in hybrid production, where true hybrids could be identified at the seedling stage.

11.
Front Plant Sci ; 9: 918, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30073004

RESUMO

Setaria (L.) P. Beauv is a genus of grasses that belongs to the Poaceae (grass) family, subfamily Panicoideae. Two members of the Setaria genus, Setaria italica (foxtail millet) and S. viridis (green foxtail), have been studied extensively over the past few years as model species for C4-photosynthesis and to facilitate genome studies in complex Panicoid bioenergy grasses. We exploited the available genetic and genomic resources for S. italica and its wild progenitor, S. viridis, to study the genetic basis of seed shattering. Reduced shattering is a key trait that underwent positive selection during domestication. Phenotyping of F2:3 and recombinant inbred line (RIL) populations generated from a cross between S. italica accession B100 and S. viridis accession A10 identified the presence of additive main effect quantitative trait loci (QTL) on chromosomes V and IX. As expected, enhanced seed shattering was contributed by the wild S. viridis. Comparative analyses pinpointed Sh1 and qSH1, two shattering genes previously identified in sorghum and rice, as potentially underlying the QTL on Setaria chromosomes IX and V, respectively. The Sh1 allele in S. italica was shown to carry a PIF/Harbinger MITE in exon 2, which gave rise to an alternatively spliced transcript that lacked exon 2. This MITE was universally present in S. italica accessions around the world and absent from the S. viridis germplasm tested, strongly suggesting a single origin of foxtail millet domestication. The qSH1 gene carried two MITEs in the 5'UTR. Presence of one or both MITEs was strongly associated with cultivated germplasm. If the MITE insertion(s) in qSH1 played a role in reducing shattering in S. italica accessions, selection for the variants likely occurred after the domestication of foxtail millet.

12.
BMC Evol Biol ; 18(1): 91, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29898656

RESUMO

BACKGROUND: Advances in genomic technologies have expanded our ability to accurately and exhaustively detect natural genomic variants that can be applied in crop improvement and to increase our knowledge of plant evolution and adaptation. Switchgrass (Panicum virgatum L.), an allotetraploid (2n = 4× = 36) perennial C4 grass (Poaceae family) native to North America and a feedstock crop for cellulosic biofuel production, has a large potential for genetic improvement due to its high genotypic and phenotypic variation. In this study, we analyzed single nucleotide polymorphism (SNP) variation in 372 switchgrass genotypes belonging to 36 accessions for 12 genes putatively involved in biomass production to investigate signatures of selection that could have led to ecotype differentiation and to population adaptation to geographic zones. RESULTS: A total of 11,682 SNPs were mined from ~ 15 Gb of sequence data, out of which 251 SNPs were retained after filtering. Population structure analysis largely grouped upland accessions into one subpopulation and lowland accessions into two additional subpopulations. The most frequent SNPs were in homozygous state within accessions. Sixty percent of the exonic SNPs were non-synonymous and, of these, 45% led to non-conservative amino acid changes. The non-conservative SNPs were largely in linkage disequilibrium with one haplotype being predominantly present in upland accessions while the other haplotype was commonly present in lowland accessions. Tajima's test of neutrality indicated that PHYB, a gene involved in photoperiod response, was under positive selection in the switchgrass population. PHYB carried a SNP leading to a non-conservative amino acid change in the PAS domain, a region that acts as a sensor for light and oxygen in signal transduction. CONCLUSIONS: Several non-conservative SNPs in genes potentially involved in plant architecture and adaptation have been identified and led to population structure and genetic differentiation of ecotypes in switchgrass. We suggest here that PHYB is a key gene involved in switchgrass natural selection. Further analyses are needed to determine whether any of the non-conservative SNPs identified play a role in the differential adaptation of upland and lowland switchgrass.


Assuntos
Adaptação Fisiológica/genética , Genes de Plantas , Variação Genética , Panicum/anatomia & histologia , Panicum/genética , Sequência de Bases , Biomassa , Mapeamento Cromossômico , Fluxo Gênico , Genética Populacional , Mutação/genética , Panicum/fisiologia , Filogeografia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Estados Unidos
13.
Ecol Evol ; 6(9): 2790-804, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27066253

RESUMO

Investigating the origin and dispersal pathways is instrumental to mitigate threats and economic and environmental consequences of invasive crop pathogens. In the case of Puccinia striiformis causing yellow rust on wheat, a number of economically important invasions have been reported, e.g., the spreading of two aggressive and high temperature adapted strains to three continents since 2000. The combination of sequence-characterized amplified region (SCAR) markers, which were developed from two specific AFLP fragments, differentiated the two invasive strains, PstS1 and PstS2 from all other P. striiformis strains investigated at a worldwide level. The application of the SCAR markers on 566 isolates showed that PstS1 was present in East Africa in the early 1980s and then detected in the Americas in 2000 and in Australia in 2002. PstS2 which evolved from PstS1 became widespread in the Middle East and Central Asia. In 2000, PstS2 was detected in Europe, where it never became prevalent. Additional SSR genotyping and virulence phenotyping revealed 10 and six variants, respectively, within PstS1 and PstS2, demonstrating the evolutionary potential of the pathogen. Overall, the results suggested East Africa as the most plausible origin of the two invasive strains. The SCAR markers developed in the present study provide a rapid, inexpensive, and efficient tool to track the distribution of P. striiformis invasive strains, PstS1 and PstS2.

14.
Mol Ecol ; 23(20): 4912-25, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25185718

RESUMO

An extensive survey of the standing genetic variation in natural populations is among the priority steps in developing a species into a model system. In recent years, green foxtail (Setaria viridis), along with its domesticated form foxtail millet (S. italica), has rapidly become a promising new model system for C4 grasses and bioenergy crops, due to its rapid life cycle, large amount of seed production and small diploid genome, among other characters. However, remarkably little is known about the genetic diversity in natural populations of this species. In this study, we survey the genetic diversity of a worldwide sample of more than 200 S. viridis accessions, using the genotyping-by-sequencing technique. Two distinct genetic groups in S. viridis and a third group resembling S. italica were identified, with considerable admixture among the three groups. We find the genetic variation of North American S. viridis correlates with both geography and climate and is representative of the total genetic diversity in this species. This pattern may reflect several introduction/dispersal events of S. viridis into North America. We also modelled demographic history and show signal of recent population decline in one subgroup. Finally, we show linkage disequilibrium decay is rapid (<45 kb) in our total sample and slow in genetic subgroups. These results together provide an in-depth understanding of the pattern of genetic diversity of this new model species on a broad geographic scale. They also provide key guidelines for on-going and future work including germplasm preservation, local adaptation, crossing designs and genomewide association studies.


Assuntos
Genética Populacional , Filogenia , Setaria (Planta)/classificação , Clima , DNA de Plantas/genética , Genótipo , Geografia , Desequilíbrio de Ligação , América do Norte , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Setaria (Planta)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...