Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 10(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34959512

RESUMO

The main pathogenic factor of Bacillus anthracis is a three-component toxin encoded by the pagA, lef, and cya genes, which are located on the pXO1 plasmid. The atxA gene, which encodes the primary regulator of pathogenicity factor expression, is located on the same plasmid. In this work, we evaluated the polymorphism of the pagA, lef, cya, and atxA genes for 85 B. anthracis strains from different evolutionary lineages and canSNP groups. We have found a strong correlation of 19 genotypes with the main evolutionary lineages, but the correlation with the canSNP group of the strain was not as strong. We have detected several genetic markers indicating the geographical origin of the strains, for example, their source from the steppe zone of the former USSR. We also found that strains of the B.Br.001/002 group caused an anthrax epidemic in Russia in 2016 and strains isolated during paleontological excavations in the Russian Arctic have the same genotype as the strains of the B.Br.CNEVA group circulating in Central Europe. This data could testify in favor of the genetic relationship of these two groups of strains and hypothesize the ways of distribution of their ancestral forms between Europe and the Arctic.

2.
Microorganisms ; 8(9)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932593

RESUMO

Tularemia is a severe infectious disease caused by the Gram-negative bacteria Fracisella tularensis. There are four subspecies of F.tularensis: holarctica, tularensis, mediasiatica, and novicida, which differ in their virulence and geographic distribution. One of them, subsp. mediasiatica remains extremely poorly studied, primarily due to the fact that it is found only in the sparsely populated regions of Central Asia and Russia. In particular there is little information in the literature on the virulence and pathogenicity of subsp. mediasiatica. In the present article, we evaluated the comparative virulence of subsp. mediasiatica in vaccinated laboratory animals which we infected with virulent strains: subsp. mediasiatica 678, subsp. holarctica 503, and subsp. tularensis SCHU within 60 to 180 days after vaccination. We found that subsp. mediasiatica is comparable in pathogenicity in mice with subsp. tularensis and in guinea pigs with subsp. holarctica. We also found that the live vaccine does not fully protect mice from subsp. mediasiatica but completely protects guinea pigs for at least six months. In general, our data suggest that subsp. mediasiatica occupies an intermediate position in virulence between spp. tularensis and holarctica.

3.
PLoS One ; 14(5): e0209140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31116737

RESUMO

This article describes Bacillus anthracis strains isolated during an outbreak of anthrax on the Yamal Peninsula in the summer of 2016 and independently in Yakutia in 2015. A common feature of these strains is their conservation in permafrost, from which they were extracted either due to the thawing of permafrost (Yamal strains) or as the result of paleontological excavations (Yakut strains). All strains isolated on the Yamal share an identical genotype belonging to lineage B.Br.001/002, pointing to a common source of infection in a territory over 250 km in length. In contrast, during the excavations in Yakutia, three genetically different strains were recovered from a single pit. One strain belongs to B.Br.001/002, and whole genome sequence analysis showed that it is most closely related to the Yamal strains in spite of the remoteness of Yamal from Yakutia. The two other strains contribute to two different branches of A.Br.008/011, one of the remarkable polytomies described so far in the B. anthracis species. The geographic distribution of the strains belonging to A.Br.008/011 is suggesting that the polytomy emerged in the thirteenth century, in combination with the constitution of a unified Mongol empire extending from China to Eastern Europe. We propose an evolutionary model for B. anthracis recent evolution in which the B lineage spread throughout Eurasia and was subsequently replaced by the A lineage except in some geographically isolated areas.


Assuntos
Antraz/epidemiologia , Antraz/microbiologia , Bacillus anthracis/classificação , Bacillus anthracis/genética , Pergelissolo/microbiologia , Microbiologia do Solo , Animais , Antraz/transmissão , Bacillus anthracis/isolamento & purificação , Surtos de Doenças , Genoma Bacteriano , Genômica/métodos , Cobaias , Humanos , Camundongos , Filogenia , Polimorfismo de Nucleotídeo Único , Federação Russa/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...