Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(5): 130, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844611

RESUMO

Naringenin (NRG) inhibits the fungal 17ß-hydroxysteroid dehydrogenase accountable for ergosterol synthesis in Candida albicans (C. albicans), a causative agent for cutaneous candidiasis. In present research, NRG was complexed with ZnO nanomaterial (NRG-Zn2+) to synthesize NRG-Zn2+ nanocomposites. The particle size and ζ-potential of NRG-Zn2+ nanocomposites were respectively estimated to be 180.33 ± 1.22-nm and - 3.92 ± 0.35-mV. In silico data predicted the greater affinity of NRG-Zn2+ nanocomposite for 14α-demethylase and ceramide in comparison to NRG alone. Later, NRG-Zn2+ nanocomposites solution was transformed in to naringenin-zinc oxide nanocomposites loaded chitosan gel (NRG-Zn-CS-Gel) with viscosity and firmness of 854806.7 ± 52386.43 cP and 698.27 ± 10.35 g, respectively. The ex-vivo skin permeation demonstrated 70.49 ± 5.22% skin retention, significantly greater (P < 0.05) than 44.48 ± 3.06% of naringenin loaded chitosan gel (NRG-CS-Gel) and 31.24 ± 3.28% of naringenin solution (NRG Solution). NRG-Zn-CS-Gel demonstrated 6.71 ± 0.84% permeation of NRG with a flux value of 0.046 ± 0.01-µg/cm2/h. The MIC50 of NRG-Zn-CS-Gel against C. albicans was estimated to be 0.156-µg/mL with FICI (fractional inhibitory concentration index) of 0.018 that consequently exhibited synergistic efficacy. Further, NRG-Zn-CS-Gel demonstrated superior antifungal efficacy in C. albicans induced cutaneous candidiasis infection in Balb/c mice. The fungal burden in NRG-Zn-CS-Gel treated group was 109 ± 25 CFU/mL, significantly lower (P < 0.05) than positive control (2260 ± 446 CFU/mL), naringenin loaded chitosan gel (NRG-CS-Gel; 928 ± 127 CFU/mL) and chitosan gel (CS-Gel; 2116 ± 186 CFU/mL) treated mice. Further, histopathology examination and cytokine profiling of TNF-α, IL-1ß and IL-10 revealed the healing of skin and inflammation associated with cutaneous candidiasis infection. In conclusion, NRG-Zn-CS-Gel may be a potential candidate for translating in to a clinical viable topical nanotherapeutic.


Assuntos
Antifúngicos , Candida albicans , Quitosana , Flavanonas , Géis , Camundongos Endogâmicos BALB C , Nanocompostos , Óxido de Zinco , Animais , Flavanonas/administração & dosagem , Flavanonas/farmacologia , Camundongos , Candida albicans/efeitos dos fármacos , Quitosana/química , Quitosana/administração & dosagem , Nanocompostos/química , Nanocompostos/administração & dosagem , Antifúngicos/administração & dosagem , Antifúngicos/farmacologia , Antifúngicos/farmacocinética , Óxido de Zinco/administração & dosagem , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Sistemas de Liberação de Medicamentos/métodos , Pele/metabolismo , Pele/efeitos dos fármacos , Pele/microbiologia , Candidíase/tratamento farmacológico , Polímeros/química , Absorção Cutânea/efeitos dos fármacos , Tamanho da Partícula , Administração Cutânea
2.
Colloids Surf B Biointerfaces ; 230: 113509, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37595379

RESUMO

Complexity associated with the aberrant physiology of traumatic brain injury (TBI) makes its therapeutic targeting vulnerable. The underlying mechanisms of pathophysiology of TBI are yet to be completely illustrated. Primary injury in TBI is associated with contusions and axonal shearing whereas excitotoxicity, mitochondrial dysfunction, free radicals generation, and neuroinflammation are considered under secondary injury. MicroRNAs, proinflammatory cytokines, and Glial fibrillary acidic protein (GFAP) recently emerged as biomarkers in TBI. In addition, several approved therapeutic entities have been explored to target existing and newly identified drug-targets in TBI. However, drug delivery in TBI is hampered due to disruption of blood-brain barrier (BBB) in secondary TBI, as well as inadequate drug-targeting and retention effect. Colloidal therapeutics appeared helpful in providing enhanced drug availability to the brain owing to definite targeting strategies. Moreover, immense efforts have been put together to achieve increased bioavailability of therapeutics to TBI by devising effective targeting strategies. The potential of colloidal therapeutics to efficiently deliver drugs at the site of injury and down-regulate the mediators of TBI are serving as novel policies in the management of TBI. Therefore, in present manuscript, we have illuminated a myriad of molecular-targets currently identified and recognized in TBI. Moreover, particular emphasis is given to frame armamentarium of repurpose drugs which could be utilized to block molecular targets in TBI in addition to drug delivery barriers. The critical role of colloidal therapeutics such as liposomes, nanoparticles, dendrimers, and exosomes in drug delivery to TBI through invasive and non-invasive routes has also been highlighted.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Lipossomos , Encéfalo , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA