Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 20090, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209928

RESUMO

Remote Sensing Image Object Detection (RSIOD) faces the challenges of multi-scale objects, dense overlap of objects and uneven data distribution in practical applications. In order to solve these problems, this paper proposes a YOLO-ACPHD RSIOD algorithm. The algorithm adopts Adaptive Condition Awareness Technology (ACAT), which can dynamically adjust the parameters of the convolution kernel, so as to adapt to the objects of different scales and positions. Compared with the traditional fixed convolution kernel, this dynamic adjustment can better adapt to the diversity of scale, direction and shape of the object, thus improving the accuracy and robustness of Object Detection (OD). In addition, a High-Dimensional Decoupling Technology (HDDT) is used to reduce the amount of calculation to 1/N by performing deep convolution on the input data and then performing spatial convolution on each channel. When dealing with large-scale Remote Sensing Image (RSI) data, this reduction in computation can significantly improve the efficiency of the algorithm and accelerate the speed of OD, so as to better adapt to the needs of practical application scenarios. Through the experimental verification of the RSOD RSI data set, the YOLO-ACPHD model in this paper shows very satisfactory performance. The F1 value reaches 0.99, the Precision value reaches 1, the Precision-Recall value reaches 0.994, the Recall value reaches 1, and the mAP value reaches 99.36 % , which indicates that the model shows the highest level in the accuracy and comprehensiveness of OD.

2.
Comput Intell Neurosci ; 2022: 8051876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983142

RESUMO

Machine learning only uses single-channel grayscale features to model the target, and the filter solution process is relatively simple. When the target has a large change relative to the initial frame, the tracking effect is poor. When there is the same kind of target interference in the target search area, the tracking results will be poor. The tracking algorithm based on the fully convolutional Siamese network can solve these problems. By learning the similarity measurement function, the similarity between the template and the target search area is evaluated, and the target area is found according to the similarity. It adopts offline pre-training and does not update online for tracking, which has a faster tracking speed. According to this study, (1) considering the accuracy and speed, the target tracking algorithm based on correlation filtering performs well. A sample adaptive update model is introduced to eliminate unreliable samples, which effectively enhances the reliability of training samples. With simultaneous changes in illumination and scale, fast motion and in-plane rotation IPR can still be maintained. (2) Determined by calculating the Hessian matrix, in the Struck function, Bike3 parameter adjustment can achieve fast tracking, and Boat5 ensures that the system stability is maintained in the presence of interference factors. The position of the highest scoring point in the fine similarity score map of the same size as the search image is obtained by bicubic interpolation as the target position. (3) The parallax discontinuity caused by the object boundary cannot be directly processed as a smooth continuous parallax. The MeanShift vector obtained by calculating the target template feature and the feature to be searched can increase the accuracy by 53.1%, reduce the robustness by 31.8%, and reduce the error by 28.6% in the SiamVGG algorithm.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Movimento (Física) , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA