Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 162: 213917, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38861802

RESUMO

Acute myocardial infarction (AMI) resulting from coronary artery occlusion stands as the predominant cause of cardiovascular disability and mortality worldwide. An all-encompassing treatment strategy targeting pathological processes of oxidative stress, inflammation, proliferation and fibrotic remodeling post-AMI is anticipated to enhance therapeutic outcomes. Herein, an up-down-structured bilayer microneedle (Ce-CLMs-BMN) with reactive oxygen species (ROS) and ultrasound (US) dual-responsiveness is proposed for AMI in-situ sequential therapy. The upper-layer microneedle is formulated by crosslinking ROS-sensitive linker with polyvinyl alcohol loaded with cerium dioxide nanoparticles (CeNPs) featuring versatile enzyme-mimetic activities. During AMI acute phase, prompted by ischemia-induced microenvironmental redox imbalance, this layer swiftly releases CeNPs, which aid in eliminating excessive ROS and catalyzing oxygen gas (O2) production through multiple enzymatic pathways, thereby alleviating oxidative stress-induced damage and modulating inflammation. In AMI chronic repair phase, micro-nano reactors (CLMs) situated in the lower-layer microneedle undergo cascade reactions with the assistance of US irradiation to generate nitric oxide (NO). As a bioactive molecule with pro-angiogenic and anti-fibrotic effects, NO expedites cardiac repair while attenuating adverse remodeling. Additionally, its antiplatelet-aggregating properties contribute to thromboprophylaxis. In-vitro and in-vivo results substantiate the efficacy of this integrated healing approach in AMI management, showcasing promising prospects for advancing infarcted heart repair.


Assuntos
Infarto do Miocárdio , Agulhas , Espécies Reativas de Oxigênio , Infarto do Miocárdio/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Nanopartículas/uso terapêutico , Cério/administração & dosagem , Cério/química , Cério/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Humanos , Óxido Nítrico/administração & dosagem , Óxido Nítrico/metabolismo , Ratos , Masculino , Álcool de Polivinil/química , Álcool de Polivinil/administração & dosagem
2.
Acta Biomater ; 182: 228-244, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761962

RESUMO

Arsenic (As) poisoning has become a global public problem threatening human health. Chelation therapy (CT) is the preferred treatment for arsenic poisoning. Nevertheless, efficient and safe arsenic removal in vivo remains a daunting challenge due to the limitations of chelators, including weak affinity, poor cell membrane penetration, and short half-life. Herein, a mercapto-functionalized and size-tunable hierarchical porous Zr-MOF (UiO-66-TC-SH) is developed, which possesses abundant arsenic chemisorption sites, effective cell uptake ability, and long half-life, thereby efficiently removing toxic arsenic in vivo. Moreover, the strong binding affinity of UiO-66-TC-SH for arsenic reduces systemic toxicity caused by off-target effects. In animal trials, UiO-66-TC-SH decreases the blood arsenic levels of acute arsenic poisoning mice to a normal value within 48 h, and the efficacy is superior to clinical drugs 2,3-dimercaptopropanesulfonic acid sodium salt (DMPS). Meanwhile, UiO-66-TC-SH also significantly mitigates the arsenic accumulation in the metabolic organs of chronic arsenic poisoning mice. Surprisingly, UiO-66-TC-SH also accelerates the metabolism of arsenic in organs of tumor-bearing mice and alleviates the side effects of arsenic drugs antitumor therapy. STATEMENT OF SIGNIFICANCE: Arsenic (As) contamination has become a global problem threatening public health. The present clinical chelation therapy (CT) still has some limitations, including the weak affinity, poor cell membrane permeability and short half-life of hydrophilic chelators. Herein, a metal-organic framework (MOF)-based multieffective arsenic removal strategy in vivo is proposed for the first time. Mercapto-functionalized and size-tunable hierarchical porous Zr-MOF nanoantidote (denoted as UiO-66-TC-SH) is accordingly designed and synthesized. After injection, UiO-66-TC-SH can form Zr-O-As bonds and As-S bonds with arsenic, thus enhancing arsenic adsorption capacity, cycling stability and systemic safety simultaneously. The acute arsenic poisoning model results indicate that UiO-66-TC-SH shows superior efficacy to the clinical drug sodium dimercaptopropanesulfonate (DMPS). More meaningfully, we find that UiO-66-TC-SH also accelerates the metabolism of arsenic in organs of tumor-bearing mice and alleviates side effects of arsenic drugs anti-tumor therapy.


Assuntos
Intoxicação por Arsênico , Arsênio , Estruturas Metalorgânicas , Zircônio , Animais , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Zircônio/química , Zircônio/farmacologia , Arsênio/farmacocinética , Camundongos , Intoxicação por Arsênico/tratamento farmacológico , Intoxicação por Arsênico/metabolismo , Humanos , Quelantes/química , Quelantes/farmacologia , Porosidade , Ácidos Ftálicos
3.
Biomater Adv ; 160: 213851, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642517

RESUMO

Burns are a significant public health issue worldwide, resulting in prolonged hospitalization, disfigurement, disability and, in severe cases, death. Among them, deep second-degree burns are often accompanied by bacterial infections, insufficient blood flow, excessive skin fibroblasts proliferation and collagen deposition, all of which contribute to poor wound healing and scarring following recovery. In this study, SNP/MCNs-SKN-chitosan-ß-glycerophosphate hydrogel (MSSH), a hydrogel composed of a temperature-sensitive chitosan-ß-glycerophosphate hydrogel matrix (CGH), mesoporous carbon nanospheres (MCNs), nitric oxide (NO) donor sodium nitroprusside (SNP) and anti-scarring substance shikonin (SKN), is intended for use as a biomedical material. In vitro tests have revealed that MSSH has broad-spectrum antibacterial abilities and releases NO in response to near-infrared (NIR) laser to promote angiogenesis. Notably, MSSH can inhibit excessive proliferation of fibroblasts and effectively reduce scarring caused by deep second-degree burns, as demonstrated by in vitro and in vivo tests.


Assuntos
Queimaduras , Cicatriz , Hidrogéis , Naftoquinonas , Cicatrização , Queimaduras/tratamento farmacológico , Queimaduras/patologia , Cicatrização/efeitos dos fármacos , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Cicatriz/prevenção & controle , Cicatriz/patologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Naftoquinonas/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Fibroblastos/efeitos dos fármacos , Quitosana/farmacologia , Quitosana/química , Temperatura , Camundongos , Humanos , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Proliferação de Células/efeitos dos fármacos
4.
Adv Healthc Mater ; 13(8): e2303095, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38175177

RESUMO

Androgenetic alopecia (AGA) is a prevalent systemic disease caused by diverse factors, for which effective treatments are currently limited. Herein, the oleogel (OG) containing copper-curcumin (CuR) nanoparticles is developed, designated as CuRG, which is also combined with traditional naturopathic scraping (Gua Sha, SCR) as a multifunctional therapy for AGA. With the assistance of lipophilic OG and SCR, CuR can efficaciously penetrate the epidermal and dermal regions where most hair follicles (HFs) reside, thereby releasing curcumin (CR) and copper ions (Cu2+) subcutaneously to facilitate hair regeneration. Concomitantly, the mechanical stimulation induced by SCR promotes the formation of new blood vessels, which is conducive to reshaping the microenvironment of HFs. This study validates that the combination of CuRG and SCR is capable of systematically interfering with different pathological processes, ranging from improvement of perifollicular microenvironment (oxidative stress and insufficient vascularization), regulation of inflammatory responses to degradation of androgen receptor, thus potentiating hair growth. Compared with minoxidil, a widely used clinical drug for AGA therapy, the designed synergistic system displays augmented hair regeneration in the AGA mouse model.


Assuntos
Cobre , Curcumina , Animais , Camundongos , Cobre/farmacologia , Curcumina/farmacologia , Alopecia/tratamento farmacológico , Alopecia/metabolismo , Alopecia/patologia , Cabelo/metabolismo , Compostos Orgânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA