Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361922

RESUMO

AtDjC5 belongs to the J-protein family in Arabidopsis thaliana. Its biological functions remain unclear. In this study, we examined the roles of AtDjC5 in resisting heat stress using reverse genetic analysis. After the seedlings were exposed directly to 44 °C for 90 min, AtDjC5 knockout seedlings displayed decreases in the survival rate, membrane system stability, and cell vitality compared to WT seedlings, indicating that AtDjC5 is involved in plant basal thermotolerance. The AtDjC5 knockout seedlings pre-exposed to 37 °C for 30 min exhibited decreases in the survival rate and total chlorophyll contents and increased cell death when they were subsequently exposed to 45 °C compared to the WT seedlings, indicating that AtDjC5 plays an important role in plant acquired thermotolerance. AtDjC5 was found to localize to the endoplasmic reticulum. The expression of the AtDjC5 gene was induced by heat and TM (an ER stress inducer) treatment. Furthermore, we found that the knockout of AtDjC5 inhibited ER stress-induced autophagy and the expression of ER stress-related genes. Taken together, these results suggest that AtDjC5 facilitates thermotolerance, likely by aiding in the ER stress response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Termotolerância , Arabidopsis/metabolismo , Termotolerância/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plântula/metabolismo , Resposta ao Choque Térmico/genética , Regulação da Expressão Gênica de Plantas
2.
Plant Signal Behav ; 15(2): 1714189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31933409

RESUMO

The 70-kD heat shock proteins (HSP70s or HSC70s) function as molecular chaperones and are involved in diverse cellular processes. We recently demonstrated the roles of mitochondrial HSC70-1 (mtHSC70-1) in the establishment of cytochrome c oxidase (COX)-dependent respiration and redox homeostasis in Arabidopsis thaliana. Defects in COX assembly were observed in the mtHSC70-1 knockout lines. The levels of Cox2 (COX subunit 2) proteins in COX complex were markedly lower in the mutants than in wild-type plants; however, the levels of total Cox2 proteins in the mutants were not obviously different from those in wild-type plants, suggesting that the stability of COX or the availability of Cox2 was impaired in the mtHSC70-1 mutants. Here, we further detected the interaction between mtHSC70-1 and Cox2 proteins through co-immunoprecipitation, pull-down and firefly luciferase complementation imaging assays. The results showed that mtHSC70-1 could directly combine Cox2 in vivo and in vitro, providing supporting evidence for the role of mtHSC70-1 in COX assembly.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclo-Oxigenase 2/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclo-Oxigenase 2/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ligação Proteica
3.
J Exp Bot ; 71(1): 90-104, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31587070

RESUMO

An increased concentration of cytosolic Ca2+ is an early response of plant cells to heat shock. Arabidopsis cyclic nucleotide-gated ion channel 6 (CNGC6) mediates heat-induced Ca2+ influx and is activated by cAMP. However, it remains unclear how the Ca2+ conductivity of CNGC6 is negatively regulated under the elevated cytosolic Ca2+ concentration. In this study, Arabidopsis calmodulin isoforms CaM1/4, CaM2/3/5, CaM6, and CaM7 were found to bind to CNGC6 to varying degrees, and this binding was dependent on the presence of Ca2+ and IQ6, an atypical isoleucine-glutamine motif in CNGC6. Knockout of CaM2, CaM3, CaM5, and CaM7 genes led to a marked increase in plasma membrane inward Ca2+ current under heat shock conditions; however, knockout of CaM1, CaM4, and CaM6 genes had no significant effect on plasma membrane Ca2+ current. Moreover, the deletion of IQ6 from CNGC6 led to a marked increase in plasma membrane Ca2+ current under heat shock conditions. Taken together, the data suggest that CNGC6-mediated Ca2+ influx is likely to be negatively regulated by CaM2/3/5 and CaM7 isoforms under heat shock conditions, and that IQ6 plays an important role in CaM binding and the feedback regulation of the channel.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Calmodulina/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Regulação da Expressão Gênica de Plantas/genética , Resposta ao Choque Térmico/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Isoformas de Proteínas/metabolismo
4.
J Exp Bot ; 70(20): 5575-5590, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31384929

RESUMO

The 70 kDa heat shock proteins function as molecular chaperones and are involved in diverse cellular processes. However, the functions of the plant mitochondrial HSP70s (mtHSC70s) remain unclear. Severe growth defects were observed in the Arabidopsis thaliana mtHSC70-1 knockout lines, mthsc70-1a and mthsc70-1b. Conversely, the introduction of the mtHSC70-1 gene into the mthsc70-1a background fully reversed the phenotypes, indicating that mtHSC70-1 is essential for plant growth. The loss of mtHSC70-1 functions resulted in abnormal mitochondria and alterations to respiration because of an inhibition of the cytochrome c oxidase (COX) pathway and the activation of the alternative respiratory pathway. Defects in COX assembly were observed in the mtHSC70-1 knockout lines, leading to decreased COX activity. The mtHSC70-1 knockout plants have increased levels of reactive oxygen species (ROS). The introduction of the Mn-superoxide dismutase 1 (MSD1) or the catalase 1 (CAT1) gene into the mthsc70-1a plants decreased ROS levels, reduced the expression of alternative oxidase, and partially rescued growth. Taken together, our data suggest that mtHSC70-1 plays important roles in the establishment of COX-dependent respiration.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...