Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Front Oncol ; 9: 595, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338328

RESUMO

Despite responses to initial treatment of photodynamic therapy (PDT) being promising, a recurrence rate exists. Thus, finding novel therapeutic targets to enhance PDT efficacy is an urgent need. Reports indicate that connexin (Cx) 40 plays an important role in tumor angiogenesis and growth. However, it is unknown whether Cx40-composed channels have effects on PDT efficacy. The study uniquely demonstrated that Cx40-formed channels could enhance the phototoxicity of PDT to malignant cells in vitro and in vivo. Specifically, Cx40-formed channels at high cell density could increase PDT photocytotoxicity. This action was substantially restricted when Cx40 expression was not induced or Cx40 channels were restrained. Additionally, the presence of Cx40-composed channels enhanced the phototoxicity of PDT in the tumor xenografts. The above results indicate that enhancing the function of Cx40-formed channels increases PDT efficacy. The enhancement of PDT efficacy mediated by Cx40 channels was related with intracellular pathways mediated by ROS and calcium pathways, but not the lipid peroxide-mediated pathway. This work demonstrates the capacity of Cx40-mediated channels to increase PDT efficacy and suggests that therapeutic strategies designed to maintain or enhance Cx40 expression and/or channels composed by Cx40 may increase the therapeutic efficacy of PDT.

3.
Int J Biol Sci ; 15(3): 598-609, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30745846

RESUMO

In spite of initially promising responses, 5-year recurrence after photodynamic therapy (PDT) sustains high level and an increase in PDT effectiveness is needed. It has been demonstrated that gap junctional intercellular communication (GJIC) formed by Connexin (Cx)43 could improve the transfer of "death signal" between cells, thereby causing the enhancement of cytotoxicity of chemotherapeutics and suicide gene therapy. Nevertheless, whether Cx43-composed GJIC has an effect on PDT phototoxicity remains unknown. This study showed that Cx43-formed GJIC could improve PDT phototoxicity to tumor cells in vitro and in vivo. Specifically, Cx43-formed GJIC under the condition of high cellular density could improve PDT phototoxicity in Cx43-transfected HeLa cells and Cx43-expressing U87 glioma cells. This effect was remarkably inhibited when Cx43 was not expressed or Cx43-formed GJ channels were prohibited. Additionally, the presence of Cx43-mediated GJIC could decrease the mean RTV and tumor weights of xenografts after Photofrin-PDT. The improved PDT efficacy by Cx43-composed GJIC was correlated with stress signaling pathways mediated by ROS, calcium and lipid peroxide. The present study demonstrates the presence of Cx43-composed GJIC improves PDT phototoxicity and suggests that therapeutic strategies designed to upregulate the expression of Cx43 or enhance Cx43-mediated GJIC function may increase the sensitivity of malignant cell to PDT, leading to the increment of PDT efficacy. Oppositely, factors that retard Cx43 expression or prohibit the function of Cx43-mediated GJIC may cause insensitivity of malignant cells to PDT, leading to PDT resistance.


Assuntos
Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Linhagem Celular Tumoral , Feminino , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
4.
Lasers Surg Med ; 51(3): 301-308, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30615224

RESUMO

BACKGROUND AND OBJECTIVE: Photodynamic therapy (PDT) has been widely used to treat malignant tumors. Our previous studies indicated that connexin (Cx) 32- and Cx26-composed gap junctional intercellular communication (GJIC) could improve the phototoxicity of PDT. However, the role of heterotypic Cx32/Cx26-formed GJIC in PDT phototoxicity is still unknown. Thus, the present study was aimed to investigate the effect of Cx32/Cx26-formed GJIC on PDT efficacy. METHODS: CCK8 assay was used to detect cell survival after PDT. Western blot assay was utilized to detect Cx32/Cx26 expression. "Parachute" dye-coupling assay was performed to measure the function of GJ channels. The intracellular Ca2+ concentrations were determined using flow cytometer. ELISA assay was performed to detect the intracellular levels of PGE2 and cAMP. RESULTS: The present study demonstrates there is a Cx32/Cx26-formed GJIC-dependent reduction of phototoxicity when cells were exposure to low concentration of Photofrin. Such a protective action is missing at low cell density due to the lack of GJ coupling. Under high-cell density condition, where there is opportunity for the cells to contact each other and form GJ, suppressing Cx32/Cx26-formed GJIC by either inhibiting the expression of Cx32/Cx26 or pretreating with GJ channel inhibitor augments PDT phototoxicity after cells were treated with at 2.5 µg/ml Photofrin. The above results suggest that at low Photofrin concentration, the presence of Cx32/Cx26-formed GJIC may decrease the phototoxicity of PDT, leading to the insensitivity of malignant cells to PDT treatment. The GJIC-mediated PDT insensitivity was associated with Ca2+ and prostaglandin E2 (PGE2 ) signaling pathways. CONCLUSION: The present study provides a cautionary note that for tumors expressing Cx32/Cx26, the presence of Cx32/Cx26-composed GJIC may cause the resistance of tumor cells to PDT. Oppositely, treatment strategies designed to downregulate the expression of Cx32/Cx26 or restrain the function of Cx32/Cx26-mediated GJIC may increase the sensitivity of malignant cell to PDT. Lasers Surg. Med. 51:301-308, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Comunicação Celular/efeitos da radiação , Conexina 26/fisiologia , Conexinas/fisiologia , Junções Comunicantes/efeitos da radiação , Células HeLa/efeitos da radiação , Fotoquimioterapia/efeitos adversos , Técnicas de Cultura de Células , Sobrevivência Celular , Éter de Diematoporfirina/farmacologia , Células HeLa/patologia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Proteína beta-1 de Junções Comunicantes
5.
Artigo em Inglês | MEDLINE | ID: mdl-29234436

RESUMO

Chinese medicine has been used for Alzheimer's disease (AD) treatment for thousands of years with more effective and fewer side effects. Therefore, developing effective potential candidates from Chinese medicine against AD would be considered as critical and efficient therapy for AD treatment. This study was designed to evaluate the neuronal protective effect of fraction n-butanol (NB) of Radix Notoginseng on Aß25-35-induced PC12 cells, explore the effect of the tested fraction on spatial learning and memory, and characterize the impacts of fraction NB on antioxidant enzymes, Aß production, and APP and BACE1 expressions. The results revealed that fraction NB could promote proliferation of PC12 cells and protect and rescue PC12 cells from Aß25-35-induced cell death. Moreover, fraction NB could improve spatial learning and memory impairments of senescence-accelerated prone8 (SAMP8) mice and attenuate oxidative stress and reduce the production of Aß by inhibiting the expressions of APP and BACE1 in the brains of SAMP8 mice. The result of single dose acute toxicity assay showed that fraction NB had a mild toxicity in vivo. The pronounced actions against AD and in vivo low toxicity of fraction NB suggest that fraction NB may be a useful alternative to the current AD treatment.

6.
J Biophotonics ; 10(12): 1586-1596, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28417552

RESUMO

In spite of the promising initial treatment responses presented by photodynamic therapy (PDT), 5-year recurrence rates remain high level. Therefore, improvement in the efficacy of PDT is needed. There are reports showing that connexin(Cx) 26-composed gap junctional intercellular communication (GJIC) enhances the intercellular propagation of "death signal", thereby increasing chemotherapeutic cytotoxicity. However, it is unclear whether Cx26-formed GJIC has an effect on PDT phototoxicity. The results in the present study showed that Cx26-composed GJ formation at high density enhances the phototoxicity of Photofrin-PDT. When the Cx26 is not expressed or Cx26 channels are blocked, the phototoxicity in high-density cultures substantially reduces, indicating that the enhanced PDT phototoxicity at high density is mediated by Cx26-composed GJIC. The GJIC-mediated increase in PDT phototoxicity was associated with ROS, calcium and lipid peroxide-mediated stress signaling pathways. The work presents the ability of Cx26-composed GJIC to enhance the sensitivity of malignant cells to PDT, and indicates that maintenance or increase of Cx26-formed GJIC may be a profitable strategy towards the enhancement of PDT therapeutic efficiency. Picture: The survival response of Photofrin-PDT in Dox-treated (Cx26 expressing, GJ-formed) and Dox-untreated cells (Cx26 non-expressing, GJ-unformed) at high-cell density condition.


Assuntos
Cálcio/metabolismo , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/efeitos da radiação , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Peróxidos Lipídicos/metabolismo , Fotoquimioterapia , Aldeídos/metabolismo , Ceramidas/biossíntese , Conexina 26 , Éter de Diematoporfirina/farmacologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Espaço Extracelular/efeitos da radiação , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/efeitos da radiação , Células HeLa , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Espaço Intracelular/efeitos da radiação
7.
Artigo em Inglês | MEDLINE | ID: mdl-28250789

RESUMO

Most of the existing chemotherapeutic drugs have plenty of side effects. Chinese herbal medicine has been used for pharmaceutical and dietary therapy for thousands of years with more effective and fewer side effects. Cestrum nocturnum (CN) has long been used to treat digestive diseases for centuries in China. Our previous study first proved that the n-butanol part isolated from the flowers of CN produced an inhibitory effect on the proliferation of malignant cells. However, the fractions responsible for the antiproliferation effect of n-butanol part from CN flowers and related mechanisms remain unknown. Thus, in this study, we extracted fractions C4 and C5 from n-butanol part of CN flowers and investigated their immune toxicity and antitumor activities. It was found that fractions C4 and C5 exhibited great cytotoxicity to cancer cell lines but had low immune toxicity towards T and B lymphocytes in vitro. The tested fractions also attenuated proliferation and induced apoptosis at G0/G1 and G2/M phases in Bel-7404 cells through inducing DNA damage and inhibiting topoisomerase II relaxation activity. These results suggest that fractions C4 and C5 may represent important sources of potential antitumor agents due to their pronounced antitumor effects and low immune toxicity.

8.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-665097

RESUMO

OBJECTIVE To explore the effect of connexin (Cx) 40-formed gap junctional intercellular communication (GJIC) on Photofrin- photodynamic therapy (PDT) phototoxicity in Cx40- transfected HeLa cells and its potential mechanisms. METHODS HeLa cell line stably transfected to express Cx40 was seeded at high and low cell density, respectively, to assess in vitro photosensitivity using CCK8 assay. Western blot assay was performed to detect the expression of Cx40. The intracellular ROS and Ca2 +concentrations were determined using flow cytometer. 4-HNE and ceramide were measured using ELISA assay. RESULTS Cx40-composed GJ formation at high density enhances the phototoxicity of Photofrin-PDT. When the Cx40 is not expressed or Cx40 channels are blocked, the phototoxicity in high-density cultures substantially reduces, indicating that the enhanced PDT phototoxicity at high density is mediated by Cx40-composed GJIC. The GJIC-mediated increase in PDT phototoxicity was associated with ROS and calcium-mediated stress signaling pathways. CONCLUSION The work uniquely presents the ability of Cx40-composed GJIC to enhance the sensitivity of malignant cells to PDT, and indicates that mainte?nance or increase of Cx40-formed GJIC may be a profitable strategy towards the enhancement of PDT therapeutic efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...