Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2307224, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946607

RESUMO

Targeting NLRP3 inflammasome has been recognized as a promising therapeutic strategy for the treatment of numerous common diseases. UK5099, a long-established inhibitor of mitochondrial pyruvate carrier (MPC), is previously found to inhibit macrophage inflammatory responses independent of MPC expression. However, the mechanisms by which UK5099 inhibit inflammatory responses remain unclear. Here, it is shown that UK5099 is a potent inhibitor of the NLRP3 inflammasome in both mouse and human primary macrophages. UK5099 selectively suppresses the activation of the NLRP3 but not the NLRC4 or AIM2 inflammasomes. Of note, UK5099 retains activities on NLRP3 in macrophages devoid of MPC expression, indicating this inhibitory effect is MPC-independent. Mechanistically, UK5099 abrogates mitochondria-NLRP3 interaction and in turn inhibits the assembly of the NLRP3 inflammasome. Further, a single dose of UK5099 persistently reduces IL-1ß production in an endotoxemia mouse model. Importantly, structure modification reveals that the inhibitory activities of UK5099 on NLRP3 are unrelated to the existence of the activated double bond within the UK5099 molecule. Thus, this study uncovers a previously unknown molecular target for UK5099, which not only offers a new candidate for the treatment of NLRP3-driven diseases but also confounds its use as an MPC inhibitor in immunometabolism studies.

2.
Eur J Med Chem ; 273: 116490, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38772136

RESUMO

Parkinson's disease profoundly compromises patients' daily lives, and the disassembly of α-synuclein aggregates, a primary pathological factor, represents a promising therapeutic approach. In this study, we conducted a systematic screening and optimization process to identify the novel scaffold B37, a 4-triazolyl-phenylamine derivative, exhibiting a potent disassembly activity of 1.1 µM against α-synuclein preformed fibrils. Notably, B37 demonstrated significant neuroprotective effects, ameliorated autophagic dysfunction induced by preformed fibrils, mitigated oxidative stress, and restored the co-localization of preformed fibrils with lysosomes. Transmission electron microscopy corroborated its in vitro disassembly function. Pharmacokinetic profiling revealed favorable parameters with a receptible blood-brain barrier permeability. B37 emerges as a promising lead compound for further optimization, aiming to develop a highly effective agent targeting the disassembly of α-synuclein aggregates to treat neurodegenerative diseases like Parkinson's disease.


Assuntos
Triazóis , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/antagonistas & inibidores , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Humanos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Estrutura Molecular , Relação Estrutura-Atividade , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Relação Dose-Resposta a Droga , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Barreira Hematoencefálica/metabolismo , Agregados Proteicos/efeitos dos fármacos , Ratos
3.
Pest Manag Sci ; 80(2): 744-755, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37779104

RESUMO

BACKGROUND: Mythimna loreyi is an important agricultural pest with a sensitive sex pheromone communication system. To clarify the pheromone binding proteins (PBPs) and pheromone receptors (PRs) involved in sex pheromone perception is important for both understanding the molecular olfactory mechanism and developing a new pest control strategy in M. loreyi. RESULTS: First, the electroantennogram (EAG) assay showed that male M. loreyi displayed the highest response to the major sex pheromone component Z9-14:Ac, and higher responses to two minor components, Z7-12:Ac and Z11-16:Ac. Second, the fluorescence competition binding assay showed that PBP1 bound all three pheromones and other tested compounds with high or moderate affinity, while PBP2 and PBP3 each bound only one pheromone component and few other compounds. Third, functional study using the Xenopus oocyte system demonstrated that, of the six candidate PRs, PR2 was weakly sensitive to the major pheromone Z9-14:Ac, but was strongly sensitive to pheromone analog Z9-14:OH; PR3 was strongly and specifically sensitive to a minor component Z7-12:Ac; PR4 and OR33 were both weakly sensitive to another minor component, Z11-16:Ac. Finally, phylogenetic relationship and ligand profiles of PRs were compared among six species from two closely related genera Mythimna and Spodoptera, suggesting functional shifts of M. loreyi PRs toward Spodoptera PRs. CONCLUSION: Functional differentiations were revealed among three PBPs and six PRs in sex pheromone perception, laying an important basis for understanding the molecular mechanism of sex pheromone perception and for developing new control strategies in M. loreyi. © 2023 Society of Chemical Industry.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Masculino , Atrativos Sexuais/farmacologia , Atrativos Sexuais/metabolismo , Filogenia , Mariposas/metabolismo , Feromônios/metabolismo , Percepção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...