Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 463-478, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37470804

RESUMO

Depression has increasingly become a disease that seriously harms people's mental health around the world. Icariin is the main active component of Epimedii Herba and effective on protecting the central nervous system. The purpose of this study was to explore the mechanism of icariin against depression based on network pharmacology and molecular docking. The potential targets related to icariin and depression were obtained by accessing network databases. The Metascape database was used for the enrichment analysis of GO function and KEGG pathways. A common target-pathway network was constructed using Cytoscape 3.9.0 software. Schrödinger Maestro 12.8 was adopted to evaluate the binding ability of icariin to core targets. Mice were induced by the chronic unpredictable mild stress (CUMS) model, and the prediction results of this study were verified by in vivo experiments. A total of 109 and 3294 targets were identified in icariin and depression, respectively. The common target-pathway network was constructed, and 7 core target genes were obtained. The molecular docking results of the 7 core target genes with icariin showed good affinity. In a CUMS-induced depression model, we found that icariin could effectively improve depression-like behavior of mice, increase the expression of monoamine neurotransmitters 5-hydroxytryptamine, dopamine, and norepinephrine, decrease the secretion of inflammatory factors tumor necrosis factor-α, interleukin-6, and interleukin-1ß, and upregulate the relative expression levels of BDNF, p-TrkB/TrkB, p-Akt/Akt, p-CREB/CREB, MAPK3, MAPK1, Bcl-2, EGFR, and mTOR. The results suggest that icariin has certain antidepressant effects, and may be mediated by the BDNF-TrkB signaling pathway. It provides new ideas for the treatment of depression in the future.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Farmacologia em Rede , Humanos , Animais , Camundongos , Depressão/tratamento farmacológico , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt
2.
Environ Res ; 219: 115174, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584837

RESUMO

Freshwater wetlands, paddy fields, inland aquatic ecosystems and coastal wetlands are recognized as important sources of atmospheric methane (CH4). Currently, increasing evidence shows the potential importance of the anaerobic oxidation of methane (AOM) mediated by NC10 bacteria and a novel cluster of anaerobic methanotrophic archaea (ANME)-ANME-2d in mitigating CH4 emissions from different ecosystems. To better understand the role of NC10 bacteria and ANME-2d archaea in CH4 emission reduction, the current review systematically summarizes different AOM processes and the functional microorganisms involved in freshwater wetlands, paddy fields, inland aquatic ecosystems and coastal wetlands. NC10 bacteria are widely present in these ecosystems, and the nitrite-dependent AOM is identified as an important CH4 sink and induces nitrogen loss. Nitrite- and nitrate-dependent AOM co-occur in the environment, and they are mainly affected by soil/sediment inorganic nitrogen and organic carbon contents. Furthermore, salinity is another key factor regulating the two AOM processes in coastal wetlands. In addition, ANME-2d archaea have the great potential to couple AOM to the reduction of iron (III), manganese (IV), sulfate, and even humics in different ecosystems. However, the study on the environmental distribution of ANME-2d archaea and their role in CH4 mitigation in environments is insufficient. In this study, we propose several directions for future research on the different AOM processes and respective functional microorganisms.


Assuntos
Archaea , Ecossistema , Nitritos , Metano , Anaerobiose , Bactérias , Oxirredução , Catálise , Sedimentos Geológicos , Filogenia
3.
Sci Total Environ ; 838(Pt 3): 156534, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679939

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-damo), catalyzed by bacteria closely related to Candidatus Methylomirabilis oxyfera, links the global carbon and nitrogen cycles. Currently, the contribution of n-damo in controlling methane emissions and nitrogen removal, and the key regulatory factors of this process in Chinese paddy fields are poorly known. Here, soil samples from 20 paddy fields located in different climate zones across China were collected to examine the n-damo activity and bacterial communities. The n-damo activity and bacterial abundance varied from 1.05 to 5.97 nmol CH4 g-1 (dry soil) d-1 and 2.59 × 105 to 2.50 × 107 copies g-1 dry soil, respectively. Based on the n-damo activity, it was estimated that approximately 0.91 Tg CH4 and 2.17 Tg N could be consumed annually via n-damo in Chinese paddy soils. The spatial variations in n-damo activity and community structure of n-damo bacteria were significantly (p < 0.05) affected by the soil ammonium content, labile organic carbon content and pH. Furthermore, significant differences in n-damo activity, bacterial abundance and community composition were observed among different climate zones. The n-damo activity was found to be positively correlated with the mean annual air temperature. Taken together, our results demonstrated the potential importance of n-damo in both methane consumption and nitrogen removal in Chinese paddy soils, and this process was regulated by local soil and climatic factors.


Assuntos
Metano , Nitritos , Anaerobiose , Bactérias/genética , Carbono , Desnitrificação , Nitrogênio , Oxirredução , Filogenia , RNA Ribossômico 16S , Solo
4.
Sci Total Environ ; 804: 150147, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509840

RESUMO

Microbial conversion of methane to electricity, fuels, and liquid chemicals has attracted much attention. However, due to the low solubility of methane, it is not considered a suitable substrate for microbial fuel cells (MFCs). In this study, a conductive fiber membrane (CFM) module was constructed as the bioanode of methane-driven MFCs, directly delivering methane. After biofilm formation on the CFM surface, a steady voltage output of 0.6 to 0.7 V was recorded, and the CFM-MFCs obtained a maximum power density of 64 ± 2 mW/m2. Moreover, methane oxidation produced a high concentration of intermediate acetate (up to 7.1 mM). High-throughput 16S rRNA gene sequencing suggests that the microbial community was significantly changed after electricity generation. Methane-related archaea formed a symbiotic consortium with characterized electroactive bacteria and fermentative bacteria, suggesting a combination of three types of microorganisms for methane conversion into acetate and electricity.


Assuntos
Fontes de Energia Bioelétrica , Acetatos , Eletricidade , Eletrodos , Metano , RNA Ribossômico 16S/genética
5.
Sci Total Environ ; 801: 149785, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34467934

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-damo) catalyzed by Candidatus Methylomirabilis oxyfera (M. oxyfera)-like bacteria is a new pathway for the regulation of methane emissions from paddy fields. Elevated atmospheric CO2 concentrations (e[CO2]) can indirectly affect the structure and function of microbial communities. However, the response of M. oxyfera-like bacteria to e[CO2] is currently unknown. Here, we investigated the effect of e[CO2] (ambient CO2 + 200 ppm) on community composition, abundance, and activity of M. oxyfera-like bacteria at different depths (0-5, 5-10, and 10-20 cm) in paddy fields across multiple rice growth stages (tillering, jointing, and flowering). High-throughput sequencing showed that e[CO2] had no significant effect on the community composition of M. oxyfera-like bacteria. However, quantitative PCR suggested that the 16S rRNA gene abundance of M. oxyfera-like bacteria increased significantly in soil under e[CO2], particularly at the tillering stage. Furthermore, 13CH4 tracer experiments showed potential n-damo activity of 0.31-8.91 nmol CO2 g-1 (dry soil) d-1. E[CO2] significantly stimulated n-damo activity, especially at the jointing and flowering stages. The n-damo activity and abundance of M. oxyfera-like bacteria increased by an average of 90.9% and 50.0%, respectively, under e[CO2]. Correlation analysis showed that the increase in soil dissolved organic carbon content caused by e[CO2] had significant effects on the activity and abundance of M. oxyfera-like bacteria. Overall, this study provides the first evidence for a positive response of M. oxyfera-like bacteria to e[CO2], which may help reduce methane emissions from paddy fields under future climate change conditions.


Assuntos
Dióxido de Carbono , Nitritos , Anaerobiose , Metano , Oxirredução , Filogenia , RNA Ribossômico 16S
6.
J Hazard Mater ; 394: 122547, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32289621

RESUMO

The relationship between sludge organic fraction and its dewaterability is well known in practice. However, the formal study to reveal the underlying reason is limited. To improve understanding of the nature of organic content on sludge dewatering process, this study systematically evaluated the effects of sludge organic content on its dewaterability and revealed the underlying mechanism. Analysis of 10 waste activated sludge (WAS) samples with varying organic contents showed that capillary suction time (CST) increased linearly from 34.90 ± 0.10 s to 104.90 ± 0.30 s (R2 = 0.92, p < 0.01), whereas the solid content of centrifuge cake decreased from 21.23 %±0.45 % to 12.52 %±0.14 % (R2 = 0.89, p < 0.01) when organic fractionincreased from 35.72 % to 61.11 %. These results first confirmed that WAS dewatering performance was negatively correlated to its organic content. Then, the underlying mechanism was revealed by studying the basic physicochemical properties of WAS with various organic content. The results showed that sludge with a higher organic content generally had greater extracellular polymeric substances (EPS) content, lower density and higher negative zeta potential, which hinder the aggregation and flocculation of floc particles. These properties endow the WAS with a higher organic content generally possessed more bound water content, small pores, poorer fluidity, and stronger network strength. These characteristics can hamper the separation of water from sludge cake during dewatering. Based on which, this study discussed the potential of organic fraction as a surrogate of EPS for evaluating WAS dewaterability and indicated the organic fraction can be a useful and strong indicator of WAS dewaterability.


Assuntos
Floculação/efeitos dos fármacos , Compostos Orgânicos/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Água/química , Matriz Extracelular de Substâncias Poliméricas/química , Compostos Orgânicos/análise , Esgotos/análise
7.
J Hazard Mater ; 388: 121753, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31806438

RESUMO

Anaerobic biological techniques are widely used in the reductive decolorization of textile wastewater. However, the decolorization efficiency of textile wastewater by conventional anaerobic biological techniques is generally limited due to the low biomass retention capacity and short hydraulic retention time (HRT). In this study, a methane-based hollow fiber membrane bioreactor (HfMBR) was initially inoculated with an enriched anaerobic methane oxidation (AOM) culture to rapidly form an anaerobic biofilm. Then, synthetic azo dye wastewater containing methyl orange (MO) was fed into the HfMBR. MO decolorization efficiency of ∼ 100 % (HRT = 2 to 1.5 days) and maximum decolorization rate of 883 mg/L/day (HRT = 0.5 day) were obtained by the stepwise increase of the MO loading rate into the methane-based HfMBR. Scanning electron microscopy (SEM) and fluorescence in situ hybridization (FISH) analysis visually revealed that archaea clusters formed synergistic consortia with adjacent bacteria. Quantitative PCR (qPCR), phylogenetic and high-throughput sequencing analysis results further confirmed the biological consortia formation of methane-related archaea and partner bacteria, which played a synergistic role in MO decolorization. The high removal efficiency and stable microbial structure in HfMBR suggest it is a potentially effective technique for high-toxic azo dyes removal from textile wastewater.


Assuntos
Compostos Azo/análise , Reatores Biológicos/microbiologia , Membranas Artificiais , Metano/metabolismo , Águas Residuárias/química , Descoloração da Água/métodos , Poluentes Químicos da Água/análise , Anaerobiose , Biofilmes/crescimento & desenvolvimento , Methanosarcinaceae/genética , Methanosarcinaceae/crescimento & desenvolvimento , Filogenia , Proteobactérias/genética , Proteobactérias/crescimento & desenvolvimento , RNA Ribossômico 16S
8.
Water Res ; 164: 114935, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31387057

RESUMO

Humic substances (humics) are ubiquitous in terrestrial and aquatic environments where they can serve as electron acceptors for anaerobic oxidation of organic compounds. Methane is a powerful greenhouse gas, as well as the least reactive organic molecule. Anaerobic oxidation of methane (AOM) coupled to microbial reduction of various electron acceptors plays a crucial role in mitigating methane emissions. Here, we reported that humics could serve as terminal electron acceptors for AOM using enriched nitrate-reducing AOM microorganisms. AOM coupled to the reduction of humics was demonstrated based on the production of 13C-labelled carbon dioxide, and AOM activity was evaluated with different methane partial pressures and electron acceptor concentrations. After three-cycle reduction, both AOM activity and copy numbers of the archaea 16S rRNA and mcrA genes were the highest when anthraquinone-2,6-disulfonic acid and anthraquinone-2-sulfonic acid were electron acceptors. The high-throughput sequencing results suggested that ANME-2d were the dominant methane oxidation archaea after humics reduction, although the partner bacteria NC10 trended downward, other reported humics reduction bacteria (Geobactor and Anammox) appeared. The potential electron transfer models from ANME-2d to humics were proposed. These results enable a better understanding of available electron acceptors for AOM in natural environments and broaden our insight into the significant role of ANME-2d.


Assuntos
Substâncias Húmicas , Metano , Anaerobiose , Archaea , Elétrons , Sedimentos Geológicos , Oxirredução , Filogenia , RNA Ribossômico 16S
9.
ISA Trans ; 94: 144-150, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31109724

RESUMO

Network topology has a critical effect on its reliability. Due to the complexity of networks, how to design a more reliable network topology is one of the fascinating and significant challenges. In this paper, inspired by the multi-scale model of biological systems which range from gene to individual cells, and up to the individual organism, we provide a novel method to design a reliable topology of large-scale networks. By means of fractal theory and its application in complex networks, a network topology can be described as consisting of the superposition of basic units, called fractal-cells, which are made up of several components and their connections. Based on this fractal-cell structure, we find that a fractal-cell network has structural similarity with its primitive structure, and then develop a method to build a reliable topology which is generated from a primitive ring structure. Numerical simulation compared with the existing methods and performing on real networks show that our proposed method is effective.

10.
Sci Total Environ ; 669: 168-174, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30878925

RESUMO

Denitrifying anaerobic methane oxidation (DAMO) is the process of coupling the anaerobic oxidation of methane (AOM) with denitrification, which plays an important part in controlling the flow of methane in anoxic niches. In this study, we explored the feasibility of microbial selenite reduction using methane by DAMO culture. Isotopic 13CH4 and long-term experiments showed that selenite reduction was coupled to methane oxidation, and selenite was ultimately reduced to Se (0) by the analyses of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The introduction of nitrate, the original electron acceptor in the DAMO culture, inhibited selenite reduction. Meanwhile, the microbial community of DAMO culture was significantly changed when the electron acceptor was changed from nitrate to selenite after long-term selenite reduction. High-throughput 16S rRNA gene sequencing indicated that Methylococcus (26%) became the predominant microbe performing selenite reduction and methane oxidation and the possible pathways of AOM accompanied with selenite reduction were proposed. This study revealed more potential relation during the biogeochemical cycle of carbon, nitrogen, and selenium.


Assuntos
Bactérias/metabolismo , Desnitrificação , Metano/metabolismo , Ácido Selenioso/metabolismo , Anaerobiose , Microscopia Eletrônica de Varredura , Oxirredução , Espectroscopia Fotoeletrônica , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Análise de Sequência de RNA
11.
Sci Total Environ ; 651(Pt 1): 291-297, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30236845

RESUMO

Denitrifying anaerobic methane oxidation (DAMO) combining anaerobic ammonium oxidation (Anammox) process is a novel nitrogen removal technology. However, the roles of methane transfer (gas phase) and nitrogen transfer (liquid phase) in the heterogeneous process remain unclear. In this study, granular DAMO and Anammox co-cultures were inoculated from a hollow-fiber membrane bioreactor into a sequence batch reactor (SBR). Since the methane transfer became limited in SBR, the nitrate removal rate first decreased and then increased to 10 mg/(L∙day), while the ammonium removal rate did not recover and was around 2 mg/(L∙day). The activity of DAMO archaea and Anammox bacteria decreased noticeably. Furthermore, granular aggregates dispersed into small granules and ultimately became flocs with poor settleability in SBR. The content of extracellular polymeric substances decreased, especially that of proteins and humics. DAMO archaea decreased by 94.6% and Anammox bacteria decreased by 72%. In summary, the limitation of methane transfer affected DAMO and Anammox processes more notably than nitrogen transfer, resulting in lower nitrogen removal, granule disruption, and microbial community succession.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Reatores Biológicos , Desnitrificação , Metano/metabolismo , Compostos de Amônio , Anaerobiose , Reatores Biológicos/microbiologia , Técnicas de Cocultura , Microbiota , Oxirredução
12.
J Hazard Mater ; 364: 264-271, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30384235

RESUMO

Anaerobic oxidation of methane (AOM) microorganisms widespread in nature and they are able to utilize methane as electron donor to reduce sulfate, nitrate, nitrite, and high valence metals. However, whether persistent organic contaminants can also be degraded remains unknown. In this study, the organic pollutant methyl orange (MO) was used to address this open question. The initial concentration of MO affected its degradation efficiency and higher concentration (>100 mg/L) caused considerable inhibition. A 13CH4 isotope experiment indicated that methane oxidation was involved in MO degradation, which produced N, N-dimethyl-p-phenylenediamine, and 4-aminobenzenesulfonic acid corresponded stoichiometrically. During the long-term experiment, the maximum degradation rate was 47.91 mg/(L·d). The percentage of Candidatus Methanoperedens and Pseudoxanthomonas significantly increased after 30-d of MO degradation under CH4 conditions; moreover, Candidatus Methanoperedens dominated (46.83%) the microbial community. Candidatus Methanoperedens, either alone or in combination with Pseudoxanthomonas, utilized methane as the sole carbon source to degrade MO via direct interspecies electron transfer or the syntrophy pathway. This study will add to our understanding of the functions and applications of AOM microorganisms.


Assuntos
Compostos Azo/metabolismo , Corantes/metabolismo , Metano/metabolismo , Methanosarcinales/metabolismo , Poluentes Químicos da Água/metabolismo , Xanthomonadaceae/metabolismo , Anaerobiose , Reatores Biológicos , Oxirredução , Eliminação de Resíduos Líquidos/métodos
13.
Chemosphere ; 198: 370-376, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29421752

RESUMO

Coupling of anaerobic ammonium oxidation (Anammox) with denitrifying anaerobic methane oxidation (DAMO) is a sustainable pathway for nitrogen removal and reducing methane emissions from wastewater treatment processes. However, studies on the competitive relation between Anammox bacteria and DAMO bacteria are limited. Here, we investigated the effects of variations in the contents of trace element iron on Anammox and DAMO microorganisms. The short-term results indicated that optimal concentrations of iron, which obviously stimulated the activity of Amammox bacteria, DAMO bacteria and DAMO archaea, were 80, 20, and 80 µM, respectively. The activity of Amammox bacteria increased more significant than DAMO bacteria with increasing contents of trace element iron. After long-term incubation with high content of trace element iron of 160 µM in the medium, Candidatus Brocadia (Amammox bacteria) outcompeted Candidatus Methylomirabilis oxyfera (DAMO bacteria), and ANME-2d (DAMO archaea) remarkably increased in number and dominated the co-culture systems (64.5%). Meanwhile, with further addition of iron, the removal rate of ammonium and nitrate increased by 13.6 and 9.2 times, respectively, when compared with that noted in the control. As far as we know, this study is the first to explore the important role of trace element iron contents in the competition between Anammox bacteria and DAMO bacteria and further enrichment of DAMO archaea by regulating the contents of trace element iron.


Assuntos
Compostos de Amônio/metabolismo , Ferro/metabolismo , Anaerobiose , Archaea/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Técnicas de Cocultura , Desnitrificação , Metano/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Oxirredução , Oligoelementos/metabolismo , Águas Residuárias/microbiologia
14.
Water Res ; 130: 263-270, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29241112

RESUMO

Chromium (Cr) isotope fractionation analysis is a promising tool for monitoring Cr(VI) reduction in natural aqueous systems. In addition, large amounts of CH4 in natural aqueous sediments are oxidized to CO2 through methanotrophs, thereby mitigating emissions to the atmosphere. However, the investigations on the Cr(VI) reduction process with methanotrophs, and the associated Cr isotope fractionation patterns are scarce. In this study, we have shown that Cr(VI) reduction can occur in the presence of CH4 as the sole electron donor in a hollow-fiber membrane reactor (HfMBR) after direct bacteria enrichment from sediment samples. Products of the methane oxidation by the methanotrophs are used by microbes to reduce Cr(VI) as shown by the progressive increase in δ53Cr with time in the CH4 feed reactor. The isotope fractionation factor (ε) of -2.62 ± 0.20‰ was obtained from the application of the Rayleigh distillation model. The results of Cr isotope fractionation analysis also explained the decrease of Cr(VI) concentration in the N2 feed reactor, where the δ53Cr values remained steady in the first two weeks but significantly increased in the last two weeks, indicating that physical adsorption and subsequent Cr(VI) reduction occurred. This study extended the application of Cr isotope fractionation, showing the suitability of this method for clarifying different Cr(VI) removal processes.


Assuntos
Reatores Biológicos , Isótopos do Cromo/química , Cromo/metabolismo , Poluentes Químicos da Água/metabolismo , Bactérias/metabolismo , Biofilmes , Fracionamento Químico , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Oxirredução
15.
J Hazard Mater ; 344: 585-592, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29102641

RESUMO

This study examined the microbial reduction of hexavalent chromium [Cr(VI)] by an extremely thermophilic bacterium, Caldicellulosiruptor saccharolyticus, under glucose fermentation conditions at 70°C. Experimentation with different initial Cr(VI) concentrations confirmed that C. saccharolyticus had the ability to reduce Cr(VI) and immobilize Cr(III). At a concentration of 40mg/L, Cr(VI) was completely reduced within 12h, and 97% of the reduction product Cr(III) precipitated on the cell surface. Cr(VI) reduction was accelerated by the addition of neutral red (NR, an electron mediator), resulting in the reduction time shortened to 1h. The addition of CuCl2, a Ni-Fe hydrogenase inhibitor, also enhanced Cr(VI) reduction. Additionally, analysis of the relationship between Cr(VI) reduction and glucose fermentation suggested that different electron sources acted during CuCl2 and NR conditions. Hydrogen served as an electron donor under normal fermentation and NR conditions with the catalysis of Ni-Fe hydrogenase. However, when the activity of Ni-Fe hydrogenase was inhibited by CuCl2, C. saccharolyticus directly used reduction equivalents during glucose fermentation for intracellular Cr(VI) reduction. Therefore, our findings demonstrated high Cr(VI) reduction ability and different electron transfer pathways during Cr(VI) reduction by C. saccharolyticus.


Assuntos
Cromo/metabolismo , Firmicutes/metabolismo , Cobre/farmacologia , Fermentação , Glucose/metabolismo , Oxirredução
16.
Water Res ; 122: 624-632, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28646799

RESUMO

Coupling of anaerobic ammonium oxidation (anammox) and denitrifying anaerobic methane oxidation (DAMO) microorganisms in a hollow-fiber membrane biofilm reactor (HfMBR) is a potential strategy for simultaneous anaerobic removal of nitrogen and methane in wastewater streams. In these systems, effluents contain dissolved organic substances from anammox and DAMO microorganisms, but their characteristics and relationships have not been investigated. In the present study, excitation-emission matrix (EEM) fluorescence spectroscopy was used to characterize effluent dissolved organic matter (EfDOM) from an Anammox-DAMO HfMBR. Four component types (Component 1-4) were identified by parallel factor analysis (PARAFAC) of EEM data. Component 1 was produced when anammox and DAMO microorganisms simultaneously starved, whereas Component 4 was only generated through the starving period of DAMO microorganisms, and the longer the starving period, the higher the fluorescence intensity of the components. Components 2 and 3 were generated via active and starving periods of co-cultures. More efficient nitrogen removal was accompanied by a higher fluorescence intensity and microbial activity. Compared to measuring both influent and effluent nitrogen concentrations, monitoring EfDOM can obtain other information about the reactor, such as nitrogen removal activity of the reactor, status of the microbes and the duration of starving period the reactor suffered, which therefore offers a complementary but direct tool for assessing reactor performance in complex co-culture systems.


Assuntos
Reatores Biológicos , Desnitrificação , Anaerobiose , Archaea , Metano , Espectrometria de Fluorescência
17.
Front Neurol ; 8: 104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28360886

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD) is a severe autoimmune disease of the central nervous system. The existence of autoantibody targeting aquaporin-4 (AQP4-Ab) indicates the involvement of humoral immunity in the pathogenesis of this disease. Rituximab (RTX), a monoclonal antibody against CD20, has been used to treat NMOSD by depleting circulating B cells and overall satisfactory outcome has been achieved. Although T follicular helper cells have been proved to regulate B cell activation and antibody production, the role of these cells in NMOSD and the impact of RTX treatment on these cells remain less understood. In this study, we found that frequencies of circulating T follicular helper (cTfh) cells and B cells together with the related cytokines, IL-21 and IL-6, were closely correlated with disease activity of NMOSD. Furthermore, B cell depletion with RTX treatment inhibited the expansion of cTfh cells, and these effects were achieved through eliminating IL-6-producing B cells and blocking the direct contact between cTfh cells and B cells. These findings imply the complicated cross talk between cTfh cells and B cells and may provide a novel therapeutic target for NMOSD.

18.
Bioresour Technol ; 232: 247-253, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28235661

RESUMO

Denitrifying anaerobic methane oxidation (DAMO) and Anammox co-culture system was investigated in hollow fiber membrane bioreactor (HfMBR) for the change of microbial community morphology and proportion. NO3--N and NH4+-N removal rates reached 85.33 and 37.95mg/L/d on 193d. The inoculum microorganisms were flocs and the proportion of DAMO archaea, DAMO bacteria and Anammox bacteria was 11.0, 24.2 and 0.4%, respectively, but it changed to 74.3, 11.8, 5.6% in HfMBR, respectively. Interestingly, microorganisms formed biofilms on fibers surface and the biofilms included two layers: inner layer was thin and dominated by DAMO bacteria and Anammox bacteria; while the outer layer was thick made up of granules with 100-200µm diameter and dominated by DAMO archaea. The spatial distribution of microorganisms in HfMBR was different from simulation results in the literature. Likely, HfMBR changed the interaction between DAMO and Anammox microorganisms, and the reactor configuration was beneficial for DAMO archaea growth.


Assuntos
Compostos de Amônio/química , Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Biota , Metano/metabolismo , Técnicas Microbiológicas , Anaerobiose , Archaea/metabolismo , Bactérias/metabolismo , Técnicas de Cocultura , Desnitrificação , Membranas Artificiais , Técnicas Microbiológicas/instrumentação , Técnicas Microbiológicas/métodos , Oxirredução
19.
Sci Rep ; 6: 37749, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892940

RESUMO

The dependency property and self-recovery of failure nodes both have great effects on the robustness of networks during the cascading process. Existing investigations focused mainly on the failure mechanism of static dependency groups without considering the time-dependency of interdependent nodes and the recovery mechanism in reality. In this study, we present an evolving network model consisting of failure mechanisms and a recovery mechanism to explore network robustness, where the dependency relations among nodes vary over time. Based on generating function techniques, we provide an analytical framework for random networks with arbitrary degree distribution. In particular, we theoretically find that an abrupt percolation transition exists corresponding to the dynamical dependency groups for a wide range of topologies after initial random removal. Moreover, when the abrupt transition point is above the failure threshold of dependency groups, the evolving network with the larger dependency groups is more vulnerable; when below it, the larger dependency groups make the network more robust. Numerical simulations employing the Erdos-Rényi network and Barabási-Albert scale free network are performed to validate our theoretical results.

20.
J Med Genet ; 50(7): 479-85, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23667180

RESUMO

BACKGROUND: Graves' disease is a female preponderant autoimmune illness and the contribution of the X chromosome to its risk has long been appreciated. However, no X-linked susceptibility loci have been indentified from recent genome-wide association studies (GWAS). METHODS: We re-examined the X chromosome data from our recent GWAS for Graves' disease by including males that were previously excluded from the X chromosome analyses. The data were analysed using logistic regression analysis including sex as a covariate, and an additive method assuming X chromosome inactivation, implemented in snpMatrix. RESULTS: A cluster of single nucleotide polymorphism (SNPs) at Xq21.1 was found showing association with genome-wide significance, among which rs3827440 was a non-synonymous SNP of GPR174 (P(logistic regression)= 9.52×10(-8); P(snpMatrix)=4.60×10(-9); OR=1.76, 95% CI 1.45 to 2.13). The association was reproduced in an independent sample collection set including 4564 Graves' disease cases and 3968 sex matched controls (combined P(logistic regression)=5.53×10(-21); combined P(snpMatrix)=4.26×10(-22); OR=1.69, 95% CI 1.53 to 1.86). Notably, GPR174 was widely expressed in immune related tissues and rs3827440 genotypes were associated with distinct mRNA levels (p=0.002). GPR174 did not show sex biased gene expression in our expression analysis. Resequencing study suggested the contribution of some rare variants in the GPR174 gene region to disease risk with a collapsing p value of 1.16×10(-3). CONCLUSIONS: The finding of an X-linked risk locus for Graves' disease expands our understanding of the role of the X chromosome in disease susceptibility.


Assuntos
Cromossomos Humanos X/genética , Doença de Graves/genética , Receptores Acoplados a Proteínas G/genética , Alelos , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Modelos Logísticos , Masculino , Polimorfismo de Nucleotídeo Único , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...