Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(12)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38131952

RESUMO

Oil-based drilling fluids are widely used in challenging wells such as those with large displacements, deepwater and ultra-deepwater wells, deep wells, and ultra-deep wells due to their excellent temperature resistance, inhibition properties, and lubrication. However, there is a challenging issue of rheological deterioration of drilling fluids under high-temperature conditions. In this study, a dual-amphiphilic segmented high-temperature-resistant gelling agent (HTR-GA) was synthesized using poly fatty acids and polyether amines as raw materials. Experimental results showed that the initial decomposition temperature of HTR-GA was 374 °C, indicating good thermal stability. After adding HTR-GA, the emulsion coalescence voltage increased for emulsions with different oil-to-water ratios. HTR-GA could construct a weak gel structure in oil-based drilling fluids, significantly enhancing the shear-thinning and thixotropic properties of oil-based drilling fluids under high-temperature conditions. Using HTR-GA as the core, a set of oil-based drilling fluid systems with good rheological properties, a density of 2.2 g/cm3, and temperature resistance up to 220 °C were constructed. After aging for 24 h at 220 °C, the dynamic shear force exceeded 10 Pa, and G' exceeded 7 Pa, while after aging for 96 h at 220 °C, the dynamic shear force exceeded 4 Pa, and G″ reached 7 Pa. The synthesized compound HTR-GA has been empirically validated to significantly augment the rheological properties of oil-based drilling fluids, particularly under high-temperature conditions, showcasing impressive thermal stability with a resistance threshold of up to 220 °C. This notable enhancement provides critical technical reinforcement for progressive exploration endeavors in deep and ultra-deep well formations, specifically employing oil-based drilling fluids.

2.
J Phys Chem B ; 122(2): 432-443, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28481533

RESUMO

Periodic, self-consistent density functional theory (DFT-GGA, PW91) calculations are used to study the reaction mechanism for nitric oxide (NO) reduction by hydrogen (H2) on Pt(100). Energetics of various N-O activation paths, including both direct and hydrogen-assisted N-O bond-breaking paths, and the formation of three different N-containing products (N2, N2O, and NH3), are systematically studied. On the basis of our analysis, NO* dissociation has a lower barrier than NO* hydrogenation to HNO* or NOH*, and therefore, the direct NO dissociation path is predicted to dominate N-O activation on clean Pt(100). The reaction of atomic N* with N* and NO* is proposed as the mechanism for N2 and N2O formation, respectively. NH3 formation from N* via three successive hydrogenation steps is also studied and is found to be kinetically more difficult than N2 and N2O formation from N*. Finally, NO adsorption phase diagrams on Pt(100) are constructed, and these phase diagrams suggest that, at low temperatures (e.g., 400 K), the Pt(100) surface may be covered by half a monolayer of NO. We propose that high NO coverage might affect the NO + H2 reaction mechanism, and therefore, one should explicitly take the NO coverage into consideration in first-principles studies to determine the reaction mechanism on catalyst surfaces under reaction conditions. A detailed analysis of high NO coverage effects on the reaction mechanism will be presented in a separate contribution.

3.
ACS Nano ; 9(8): 7804-14, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26027877

RESUMO

Within the area of surface science, one of the "holy grails" is to directly visualize a chemical reaction at the atomic scale. Whereas this goal has been reached by high-resolution scanning tunneling microscopy (STM) in a number of cases for reactions occurring at flat surfaces, such a direct view is often inhibited for reaction occurring at steps and interfaces. Here we have studied the CO oxidation reaction at the interface between ultrathin FeO islands and a Pt(111) support by in situ STM and density functional theory (DFT) calculations. Time-lapsed STM imaging on this inverse model catalyst in O2 and CO environments revealed catalytic activity occurring at the FeO-Pt(111) interface and directly showed that the Fe-edges host the catalytically most active sites for the CO oxidation reaction. This is an important result since previous evidence for the catalytic activity of the FeO-Pt(111) interface is essentially based on averaging techniques in conjunction with DFT calculations. The presented STM results are in accord with DFT+U calculations, in which we compare possible CO oxidation pathways on oxidized Fe-edges and O-edges. We found that the CO oxidation reaction is more favorable on the oxidized Fe-edges, both thermodynamically and kinetically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...