Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol ; 37(11): 2780-2792, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36214338

RESUMO

Oxidative stress is an important factor that causes pancreatic ß-cell dysfunction leading to the development and aggravation of diabetes. Swietenine (Stn) and swietenolide (Std) were isolated from the fruits of Swietenia macrophylla King and had the potential effects on treatment and prevention of diabetes. The aim of this study is to investigate the effects of Stn and Std on insulin secretion and apoptosis in H2 O2 induced insulinoma cell line (INS-1) cells. In the present study, INS-1 cells were treated with 300 µM H2 O2 for 4 h to establish the oxidative damage model. Cell apoptosis, insulin secretion, reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) levels, and Caspase-3 enzyme activity were measured via corresponding methods. Finally, pancreatic duodenal home box factor-1 (PDX-1), B cell lymphoma-2 (Bcl-2), and Bax protein expression were detected by western blot. Experimental results showed that Stn and Std could significantly improve the INS-1 cell viability, increase the secretion of insulin and reduce the ROS level in H2 O2 induced INS-1 cells. Furthermore, the SOD and GSH levels increased, and the MDA levels decreased compared with the model group after Stn and Std treatment. In addition, after treated with Stn and Std, cell apoptosis was improved, and the activity of Caspase 3 was also significantly inhibited. Meanwhile, Western blot results showed that Stn and Std could up-regulate the expression of PDX-1 protein, and affect the cell apoptosis pathway by up-regulating the expression of Bcl-2 protein and down-regulating the expression of Bax protein. In conclusion, Stn and Std can signifcantly improve the insulin secretion function, protect oxidative stress injury, and reduce apoptosis in H2 O2 induced INS-1 cells, which provides a research basis for Stn and Std to be new drug candidates for the treatment and prevention of diabetes.


Assuntos
Diabetes Mellitus , Meliaceae , Infecções Sexualmente Transmissíveis , Apoptose , Caspase 3/metabolismo , Glutationa/metabolismo , Insulina/metabolismo , Secreção de Insulina , Limoninas , Malondialdeído/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Proteína X Associada a bcl-2/metabolismo
2.
Ecotoxicol Environ Saf ; 230: 113140, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34979306

RESUMO

Oxyfluorfen (OXY) is widely used in agriculture as a herbicide, resulting in its continuous accumulation in the environment. The presence of OXY can be detected in soil and rivers. However, until now, the potential toxicity of OXY to aquatic organisms has not been evaluated. In this study, zebrafish was used as a model animal to evaluate OXY-induced liver toxicity. The study found that 0.25, 0.5, and 1 mg/L of OXY affected the early development of zebrafish and severely damaged the lipid and sugar metabolism in the liver of zebrafish larvae. Furthermore, a metabolic function disorder caused liver damage. OXY also caused inflammation by upregulating the inflammatory factors IL-6, IL-8, and TNF-α, and activated the apoptotic pathway to inhibit hepatocyte proliferation, resulting in zebrafish liver toxicity. Our research showed that OXY had certain toxic effects on zebrafish development and liver and could cause potential harm to other aquatic organisms and humans.

3.
J Food Biochem ; 45(9): e13898, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34378802

RESUMO

Hypericum patulum has been used as a folk medicine for its varied therapeutic effects including antifungal, wound-healing, spasmolytic, stimulant, hypotensive activities. The water decoction is drank as tea could treat cold, infantile malnutrition. The present study aims to isolate the constituents of the plant and investigate their effects on the glucose consumption in insulin-resistant HepG2 cells, furthermore, lipid metabolism in oleic acid (OA)-treated HepG2 cells was also studied. The phytochemical investigation of the plant led to the isolation of eleven compounds, and their structures were identified by spectroscopic analysis as n-dotriacontanol (1), shikimic acid (2), 1-O-caffeoylquinic acid methyl ester (3), 5-O-caffeoylquinic acid methyl ester (4), 5-O-coumaroylquinic acid methyl ester (5), 5-O-caffeoylquinic acid butyl ester (6), quercetin-3-O-α-L-rhamnoside (7), quercetin (8), quercetin-3-O-(4×´-methoxy)-α-L-rahmnopyranosyl (9), hyperoside (10), and rutin (11). The results revealed that compounds 7, 9, and 10 could enhance glucose consumption significantly in hyperglycemia induced HepG2 cells and insulin-resistant HepG2 cells. In addition, the western blotting analysis result exhibited that compounds 7, 9, and 10 in high concentration (5 µM, H) group could dramatically upregulate the expression of PPARγ protein, and even the effect of them had no significant difference compared with that of rosiglitazone. Furthermore, compounds 9 and 10 in middle concentration (2.5 µM, M) group and H group could dramatically promote triglyceride metabolism and decrease TG content in OA-treated HepG2 cells, and even in H group, reactive oxygen species (ROS) level were significantly decreased compared with model group. PRACTICAL APPLICATIONS: Hypericum patulum is a well-known plant of the genera Hypericum for its varied preventive and therapeutic potential activities. To study the chemical constituents and their effects on glucose and lipid metabolism in vitro, we detected glucose consumption in insulin-resistant HepG2 cells, triglyceride content and reactive oxygen species level in OA-treated HepG2 cells. In addition, PPARγ protein was also detected by western blotting analysis in the study. Compounds 1, 2, 3, 5, 6, 9, 10, and 11 were isolated from the plant for the first time. Quercetin-3-O-(4"-methoxy)-α-L-rahmnopyranosyl (9) and hyperoside (10) had potential therapeutic benefit against glucose and lipid metabolic disease. Therefore, this study might have certain guiding significance for further research and development of H. patulum.


Assuntos
Hypericum , Flavonoides , Glucose , Células Hep G2 , Humanos , Ácido Oleico
4.
J Food Biochem ; 45(4): e13668, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33605461

RESUMO

The fruits of Swietenia macrophylla King have been processed commercially to a variety of health foods and healthcare products and exhibited antidiabetic, anti-inflammatory, antimutagenicity, antitumor activity, and so on. This study was aimed to examine the glucose consumption in human hepatoma HepG2 cells and the expression of PPARγ of limonoids isolated from the fruits of S. macrophylla. The phytochemical investigation of the fruits led to the isolation of ten limonoids which structures were elucidated by spectroscopic analysis as swietenine (1), khayasin T (2), 6-deoxyswietenine (3), 3-O-tigloylswietenolide (4), swietenolide (5), 3,6-O,O-diacetylswietenolide (6), 7-deacetoxy-7-oxogedunin (7), fissinolide (8), proceranolide (9), 7-deacetoxy-7α-hydroxygedunin (10), and compound 10 was isolated from this plant for the first time. The glucose consumption assay revealed that compounds 1, 2, 3, 5, and 9 could promote glucose consumption significantly in normal hyperglycemia-induced HepG2 cells, furthermore, compounds 1, 5, and 9 had a better effect on promoting glucose consumption in insulin-resistant HepG2 cells. In addition, compounds 1 and 5 could dramatically enhance the expression of PPARγ protein in insulin-resistant HepG2 cells according to the western blotting analysis result. PRACTICAL APPLICATIONS: Swietenia macrophylla King belongs to the family Meliaceae and the fruits have been exhibited a wide range of biological activities, such as antidiabetic, anti-inflammatory, antimutagenicity, antitumor activity, and so on. Phytochemical investigations of S. macrophylla have revealed that limonoids and triterpenoids were effective antidiabetic agents. However, the mechanism of these limonoids to antidiabetic activity is unclear. In this study, limonoids were isolated from the fruit of S. macrophylla and their effects on the glucose consumption of insulin-resistant HepG2 cells were studied. The results showed that compounds 1 and 5 could dramatically enhance the expression of PPARγ protein in insulin-resistant HepG2 cells, which will give aid to explore the mechanism of these limonoids in the treatment of type 2 diabetes. Therefore, this research might facilitate further research and development of S. macrophylla.


Assuntos
Diabetes Mellitus Tipo 2 , Limoninas , Meliaceae , Frutas , Glucose , Células Hep G2 , Humanos , Insulina , Limoninas/farmacologia , PPAR gama/genética
5.
Environ Pollut ; 276: 116688, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33611196

RESUMO

As drug abuse has become increasingly serious, carbamazepine (CBZ) is discharged into the aquatic environment with municipal sewage, causing potential harm to aquatic organisms. Here, we utilized zebrafish, an aquatic vertebrate model, to comprehensively evaluate the hepatotoxicity of CBZ. The larvae were exposed to 0.07, 0.13, and 0.26 mmol/L CBZ from 72 hpf to 144 hpf, and the adults were exposed to 0.025, 0.05, and 0.1 mmol/L CBZ for 28 days. The substantial changes were observed in the size and histopathology of livers, indicating that CBZ induced severe hepatoxicity in the larvae and adults. Oil red O staining demonstrated CBZ exposure caused severe lipid accumulation in the livers of both larvae and adults. Furthermore, CBZ exposure facilitated hepatocyte apoptosis through TUNEL staining, which was caused by rising ROS content. Subsequently, down-regulation of genes related to the Wnt pathway in exposure groups indicated that CBZ inhibited the development of liver via the Wnt/ß-catenin signaling pathway. In conclusion, CBZ induced severe hepatotoxicity by promoting lipid accumulation, generating excessive ROS production, and inhibiting the Wnt/ß-catenin signaling pathway in zebrafish. The results reveal the occurrence of CBZ-induced hepatotoxicity in zebrafish and clarify its mechanism of action, which potentially illustrate environmental concerns associated with CBZ exposure.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Peixe-Zebra , Animais , Carbamazepina/toxicidade , Larva , Via de Sinalização Wnt
6.
Chemosphere ; 248: 125941, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32004883

RESUMO

Thiophanate-methyl (TM) is widely used all over the world and is a typical example of pesticide residues, which can be detected in the soil, and even in vegetables and fruits. However, the molecular mechanisms underlying the hepatotoxicity of TM are not well understood. In this study, we utilized zebrafish to comprehensively evaluate the hepatotoxicity of TM and explore how the molecular mechanisms of hepatotoxicity are induced. The zebrafish larvae were exposed in 6.25, 12.5 and 25 mg/L TM from 72 to 144 hpf, while the adults were exposed in 2, 4 and 6 mg/L TM for 28 days. Here, we found that 12.5 and 25 mg/L TM induces specifically serious hepatotoxicity but not the toxicity of other organs in zebrafish larvae and adults. Moreover, it might triggered hepatotoxicity by activating the caspase-3 through apoptotic pathways and oxidative stress in zebrafish. Subsequently, this resulted in a metabolic imbalance in the zebrafish's liver. In conclusion, our results disclosed the fact that TM may induce severe hepatotoxicity by mediating activation of caspase-3 and oxidative stress in zebrafish.


Assuntos
Fígado/efeitos dos fármacos , Tiofanato/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Caspase 3 , Doença Hepática Induzida por Substâncias e Drogas , Larva , Estresse Oxidativo/fisiologia , Resíduos de Praguicidas/metabolismo , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...