Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Euro Surveill ; 28(45)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37943504

RESUMO

BackgroundVarious pathogens, including bacteria, fungi, parasites, and viruses can lead to meningitis. Among viruses causing meningitis, Toscana virus (TOSV), a phlebovirus, is transmitted through sandfly bites. TOSV infection may be suspected if patients with enterovirus- and herpesvirus-negative aseptic (non-bacterial) meningitis recall recent insect bites. Other epidemiological factors (season, rural area) may be considered. The broad range of possible meningitis aetiologies poses considerable diagnosis challenges. Untargeted metagenomic next-generation sequencing (mNGS) can potentially identify pathogens, which are not considered or detected in routine diagnostic panels.AimIn this retrospective, single-centre observational study, we investigated mNGS usefulness to understand the cause of meningitis when conventional approaches fail.MethodsCerebrospinal fluid (CSF) samples from patients hospitalised in southern Spain in 2015-2019 with aseptic meningitis and no aetiology found by conventional testing, were subjected to mNGS. Patients' demographic characteristics had been recorded and physicians had asked them about recent insect bites. Obtained viral genome sequences were phylogenetically analysed.ResultsAmong 23 idiopathic cases, TOSV was identified in eight (all male; median age: 39 years, range: 15-78 years). Five cases lived in an urban setting, three occurred in autumn and only one recalled insect bites. Phylogenetic analysis of TOSV segment sequences supported one intra-genotype reassortment event.ConclusionsOur study highlights the usefulness of mNGS for identifying viral pathogens directly in CSF. In southern Spain, TOSV should be considered regardless of recalling of insect bites or other epidemiological criteria. Detection of a disease-associated reassortant TOSV emphasises the importance of monitoring the spread and evolution of phleboviruses in Mediterranean countries.


Assuntos
Mordeduras e Picadas de Insetos , Meningite , Vírus da Febre do Flebótomo Napolitano , Humanos , Masculino , Adulto , Vírus da Febre do Flebótomo Napolitano/genética , Filogenia , Estudos Retrospectivos , Espanha/epidemiologia
2.
Cell Rep ; 42(8): 112977, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37573505

RESUMO

Arthropod-borne viruses (arboviruses) transmitted by Aedes aegypti mosquitoes are an increasing threat to global health. The small interfering RNA (siRNA) pathway is considered the main antiviral immune pathway of insects, but its effective impact on arbovirus transmission is surprisingly poorly understood. Here, we use CRISPR-Cas9-mediated gene editing in vivo to mutate Dicer2, a gene encoding the RNA sensor and key component of the siRNA pathway. The loss of Dicer2 enhances early viral replication and systemic viral dissemination of four medically significant arboviruses (chikungunya, Mayaro, dengue, and Zika viruses) representing two viral families. However, Dicer2 mutants and wild-type mosquitoes display overall similar levels of vector competence. In addition, Dicer2 mutants undergo significant virus-induced mortality during infection with chikungunya virus. Together, our results define a multifaceted role for Dicer2 in the transmission of arboviruses by Ae. aegypti mosquitoes and pave the way for further mechanistic investigations.


Assuntos
Aedes , Arbovírus , Infecção por Zika virus , Zika virus , Animais , Humanos , Arbovírus/genética , Arbovírus/metabolismo , Mosquitos Vetores , Zika virus/genética , RNA Interferente Pequeno/metabolismo
3.
Nat Microbiol ; 7(12): 1951-1955, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344621

RESUMO

The ongoing monkeypox virus (MPXV) outbreak is the largest ever recorded outside of Africa. We isolated and sequenced a virus from the first clinical MPXV case diagnosed in France (May 2022). We report that tecovirimat (ST-246), a US Food and Drug Administration approved drug, is efficacious against this isolate in vitro at nanomolar concentrations, whereas cidofovir is only effective at micromolar concentrations. Our results support the use of tecovirimat in ongoing human clinical trials.


Assuntos
Monkeypox virus , Mpox , Estados Unidos , Humanos , Mpox/tratamento farmacológico , Isoindóis/farmacologia , Isoindóis/uso terapêutico , Benzamidas/farmacologia , Benzamidas/uso terapêutico
4.
Nat Commun ; 13(1): 2442, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508460

RESUMO

Interferon restricts SARS-CoV-2 replication in cell culture, but only a handful of Interferon Stimulated Genes with antiviral activity against SARS-CoV-2 have been identified. Here, we describe a functional CRISPR/Cas9 screen aiming at identifying SARS-CoV-2 restriction factors. We identify DAXX, a scaffold protein residing in PML nuclear bodies known to limit the replication of DNA viruses and retroviruses, as a potent inhibitor of SARS-CoV-2 and SARS-CoV replication in human cells. Basal expression of DAXX is sufficient to limit the replication of SARS-CoV-2, and DAXX over-expression further restricts infection. DAXX restricts an early, post-entry step of the SARS-CoV-2 life cycle. DAXX-mediated restriction of SARS-CoV-2 is independent of the SUMOylation pathway but dependent on its D/E domain, also necessary for its protein-folding activity. SARS-CoV-2 infection triggers the re-localization of DAXX to cytoplasmic sites and promotes its degradation. Mechanistically, this process is mediated by the viral papain-like protease (PLpro) and the proteasome. Together, these results demonstrate that DAXX restricts SARS-CoV-2, which in turn has evolved a mechanism to counteract its action.


Assuntos
COVID-19 , SARS-CoV-2 , Sistemas CRISPR-Cas , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Humanos , Interferons/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
5.
Nat Med ; 28(6): 1297-1302, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35322239

RESUMO

The severe acute respiratory syndrome coronavirus 2 Omicron BA.1 sublineage has been supplanted in many countries by the BA.2 sublineage. BA.2 differs from BA.1 by about 21 mutations in its spike. In this study, we first compared the sensitivity of BA.1 and BA.2 to neutralization by nine therapeutic monoclonal antibodies (mAbs). In contrast to BA.1, BA.2 was sensitive to cilgavimab, partly inhibited by imdevimab and resistant to adintrevimab and sotrovimab. We then analyzed sera from 29 immunocompromised individuals up to 1 month after administration of Ronapreve (casirivimab and imdevimab) and/or Evusheld (cilgavimab and tixagevimab) antibody cocktails. All treated individuals displayed elevated antibody levels in their sera, which efficiently neutralized the Delta variant. Sera from Ronapreve recipients did not neutralize BA.1 and weakly inhibited BA.2. Neutralization of BA.1 and BA.2 was detected in 19 and 29 out of 29 Evusheld recipients, respectively. As compared to the Delta variant, neutralizing titers were more markedly decreased against BA.1 (344-fold) than BA.2 (nine-fold). We further report four breakthrough Omicron infections among the 29 individuals, indicating that antibody treatment did not fully prevent infection. Collectively, BA.1 and BA.2 exhibit noticeable differences in their sensitivity to therapeutic mAbs. Anti-Omicron neutralizing activity of Ronapreve and, to a lesser extent, that of Evusheld is reduced in patients' sera.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais , Humanos , Glicoproteínas de Membrana/genética , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
6.
EBioMedicine ; 77: 103934, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35290827

RESUMO

BACKGROUND: SARS-CoV-2 lineages are continuously evolving. As of December 2021, the AY.4.2 Delta sub-lineage represented 20 % of sequenced strains in the UK and had been detected in dozens of countries. It has since then been supplanted by Omicron. The AY.4.2 spike displays three additional mutations (T95I, Y145H and A222V) in the N-terminal domain when compared to the original Delta variant (B.1.617.2) and remains poorly characterized. METHODS: We compared the Delta and the AY.4.2 spikes, by assessing their binding to antibodies and ACE2 and their fusogenicity. We studied the sensitivity of an authentic AY.4.2 viral isolate to neutralizing antibodies. FINDINGS: The AY.4.2 spike exhibited similar binding to all the antibodies and sera tested, and similar fusogenicity and binding to ACE2 than the ancestral Delta spike. The AY.4.2 virus was slightly less sensitive than Delta to neutralization by a panel of monoclonal antibodies; noticeably, the anti-RBD Imdevimab showed incomplete neutralization. Sensitivity of AY.4.2 to sera from vaccinated individuals was reduced by 1.3 to 3-fold, when compared to Delta. INTERPRETATION: Our results suggest that mutations in the NTD remotely impair the efficacy of anti-RBD antibodies. The spread of AY.4.2 was not due to major changes in spike fusogenicity or ACE2 binding, but more likely to a partially reduced neutralization sensitivity. FUNDING: The work was funded by Institut Pasteur, Fondation pour la Recherche Médicale, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, ANRS, the Vaccine Research Institute, Labex IBEID, ANR/FRM Flash Covid PROTEO-SARS-CoV-2 and IDISCOVR.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais Humanizados , Anticorpos Antivirais , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral
7.
Clin Microbiol Infect ; 28(2): 298.e9-298.e15, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34627988

RESUMO

OBJECTIVES: In early January 2021 an outbreak of nosocomial cases of coronavirus disease 2019 (COVID-19) emerged in Western France; RT-PCR tests were repeatedly negative on nasopharyngeal samples but positive on lower respiratory tract samples. Whole-genome sequencing (WGS) revealed a new variant, currently defining a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.616. In March, the WHO classified this as a 'variant under investigation' (VUI). We analysed the characteristics and outcomes of COVID-19 cases related to this new variant. METHODS: Clinical, virological, and radiological data were retrospectively collected from medical charts in the two hospitals involved. We enrolled those inpatients with: (a) positive SARS-CoV-2 RT-PCR on a respiratory sample, (b) seroconversion with anti-SARS-CoV-2 IgG/IgM, or (c) suggestive symptoms and typical features of COVID-19 on a chest CT scan. Cases were categorized as B.1.616, a variant of concern (VOC), or unknown. RESULTS: From 1st January to 24th March 2021, 114 patients fulfilled the inclusion criteria: B.1.616 (n = 39), VOC (n = 32), and unknown (n = 43). B.1.616-related cases were older than VOC-related cases (81 years, interquartile range (IQR) 73-88 versus 73 years, IQR 67-82, p < 0.05) and their first RT-PCR tests were rarely positive (6/39, 15% versus 31/32, 97%, p < 0.05). The B.1.616 variant was independently associated with severe disease (multivariable Cox model HR 4.0, 95%CI 1.5-10.9) and increased lethality (28-day mortality 18/39 (46%) for B.1.616 versus 5/32 (16%) for VOC, p = 0.006). CONCLUSION: We report a nosocomial outbreak of COVID-19 cases related to a new variant, B.1.616, which is poorly detected by RT-PCR on nasopharyngeal samples and is associated with high lethality.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/virologia , França/epidemiologia , Humanos , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Nat Commun ; 12(1): 6563, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753934

RESUMO

Knowledge of the origin and reservoir of the coronavirus responsible for the ongoing COVID-19 pandemic is still fragmentary. To date, the closest relatives to SARS-CoV-2 have been detected in Rhinolophus bats sampled in the Yunnan province, China. Here we describe the identification of SARS-CoV-2 related coronaviruses in two Rhinolophus shameli bats sampled in Cambodia in 2010. Metagenomic sequencing identifies nearly identical viruses sharing 92.6% nucleotide identity with SARS-CoV-2. Most genomic regions are closely related to SARS-CoV-2, with the exception of a region of the spike, which is not compatible with human ACE2-mediated entry. The discovery of these viruses in a bat species not found in China indicates that SARS-CoV-2 related viruses have a much wider geographic distribution than previously reported, and suggests that Southeast Asia represents a key area to consider for future surveillance for coronaviruses.


Assuntos
COVID-19/virologia , Quirópteros/virologia , SARS-CoV-2/genética , Sequência de Aminoácidos , Animais , COVID-19/epidemiologia , COVID-19/metabolismo , Camboja/epidemiologia , Evolução Molecular , Genoma Viral , Filogenia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
9.
Nature ; 596(7871): 276-280, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34237773

RESUMO

The SARS-CoV-2 B.1.617 lineage was identified in October 2020 in India1-5. Since then, it has become dominant in some regions of India and in the UK, and has spread to many other countries6. The lineage includes three main subtypes (B1.617.1, B.1.617.2 and B.1.617.3), which contain diverse mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein that may increase the immune evasion potential of these variants. B.1.617.2-also termed the Delta variant-is believed to spread faster than other variants. Here we isolated an infectious strain of the Delta variant from an individual with COVID-19 who had returned to France from India. We examined the sensitivity of this strain to monoclonal antibodies and to antibodies present in sera from individuals who had recovered from COVID-19 (hereafter referred to as convalescent individuals) or who had received a COVID-19 vaccine, and then compared this strain with other strains of SARS-CoV-2. The Delta variant was resistant to neutralization by some anti-NTD and anti-RBD monoclonal antibodies, including bamlanivimab, and these antibodies showed impaired binding to the spike protein. Sera collected from convalescent individuals up to 12 months after the onset of symptoms were fourfold less potent against the Delta variant relative to the Alpha variant (B.1.1.7). Sera from individuals who had received one dose of the Pfizer or the AstraZeneca vaccine had a barely discernible inhibitory effect on the Delta variant. Administration of two doses of the vaccine generated a neutralizing response in 95% of individuals, with titres three- to fivefold lower against the Delta variant than against the Alpha variant. Thus, the spread of the Delta variant is associated with an escape from antibodies that target non-RBD and RBD epitopes of the spike protein.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/virologia , Convalescença , Evasão da Resposta Imune/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/epidemiologia , Vacinas contra COVID-19/administração & dosagem , Epitopos/química , Epitopos/genética , Epitopos/imunologia , França , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
10.
Nat Commun ; 12(1): 916, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568638

RESUMO

The global emergence of Zika virus (ZIKV) revealed the unprecedented ability for a mosquito-borne virus to cause congenital birth defects. A puzzling aspect of ZIKV emergence is that all human outbreaks and birth defects to date have been exclusively associated with the Asian ZIKV lineage, despite a growing body of laboratory evidence pointing towards higher transmissibility and pathogenicity of the African ZIKV lineage. Whether this apparent paradox reflects the use of relatively old African ZIKV strains in most laboratory studies is unclear. Here, we experimentally compare seven low-passage ZIKV strains representing the recently circulating viral genetic diversity. We find that recent African ZIKV strains display higher transmissibility in mosquitoes and higher lethality in both adult and fetal mice than their Asian counterparts. We emphasize the high epidemic potential of African ZIKV strains and suggest that they could more easily go unnoticed by public health surveillance systems than Asian strains due to their propensity to cause fetal loss rather than birth defects.


Assuntos
Infecção por Zika virus/mortalidade , Infecção por Zika virus/virologia , Zika virus/fisiologia , Zika virus/patogenicidade , Aedes/fisiologia , Aedes/virologia , África , Animais , Ásia , Feminino , Humanos , Masculino , Camundongos , Filogenia , Virulência , Zika virus/classificação , Zika virus/genética , Infecção por Zika virus/transmissão
11.
Science ; 370(6519): 991-996, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33214283

RESUMO

The drivers and patterns of zoonotic virus emergence in the human population are poorly understood. The mosquito Aedes aegypti is a major arbovirus vector native to Africa that invaded most of the world's tropical belt over the past four centuries, after the evolution of a "domestic" form that specialized in biting humans and breeding in water storage containers. Here, we show that human specialization and subsequent spread of A. aegypti out of Africa were accompanied by an increase in its intrinsic ability to acquire and transmit the emerging human pathogen Zika virus. Thus, the recent evolution and global expansion of A. aegypti promoted arbovirus emergence not solely through increased vector-host contact but also as a result of enhanced vector susceptibility.


Assuntos
Aedes/virologia , Interações entre Hospedeiro e Microrganismos/genética , Mosquitos Vetores/virologia , Infecção por Zika virus/transmissão , Zika virus/fisiologia , Aedes/genética , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mosquitos Vetores/genética
12.
Euro Surveill ; 25(26)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32643599

RESUMO

Following SARS-CoV-2 emergence in China, a specific surveillance was implemented in France. Phylogenetic analysis of sequences retrieved through this surveillance suggests that detected initial introductions, involving non-clade G viruses, did not seed local transmission. Nevertheless, identification of clade G variants subsequently circulating in the country, with the earliest from a patient who neither travelled to risk areas nor had contact with travellers, suggests that SARS-CoV-2 might have been present before the first recorded local cases.


Assuntos
Infecções por Coronavirus/genética , Coronavirus/genética , Surtos de Doenças/prevenção & controle , Vigilância de Evento Sentinela , Betacoronavirus , COVID-19 , Coronavirus/classificação , Coronavirus/isolamento & purificação , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , França/epidemiologia , Genoma Viral/genética , Humanos , Pandemias/prevenção & controle , Filogenia , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Análise de Sequência , Proteínas Virais/genética
13.
Curr Biol ; 30(18): 3495-3506.e6, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32679098

RESUMO

Endogenous viral elements (EVEs) are viral sequences integrated in host genomes. A large number of non-retroviral EVEs was recently detected in Aedes mosquito genomes, leading to the hypothesis that mosquito EVEs may control exogenous infections by closely related viruses. Here, we experimentally investigated the role of an EVE naturally found in Aedes aegypti populations and derived from the widespread insect-specific virus, cell-fusing agent virus (CFAV). Using CRISPR-Cas9 genome editing, we created an Ae. aegypti line lacking the CFAV EVE. Absence of the EVE resulted in increased CFAV replication in ovaries, possibly modulating vertical transmission of the virus. Viral replication was controlled by targeting of viral RNA by EVE-derived P-element-induced wimpy testis-interacting RNAs (piRNAs). Our results provide evidence that antiviral piRNAs are produced in the presence of a naturally occurring EVE and its cognate virus, demonstrating a functional link between non-retroviral EVEs and antiviral immunity in a natural insect-virus interaction.


Assuntos
Aedes/genética , Aedes/virologia , Flavivirus/genética , Genoma de Inseto , RNA Interferente Pequeno/genética , Replicação Viral , Animais , Feminino , Flavivirus/classificação , Flavivirus/isolamento & purificação , RNA Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
14.
Virus Evol ; 6(1): veaa018, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32368352

RESUMO

Flaviviruses encompass not only medically relevant arthropod-borne viruses (arboviruses) but also insect-specific flaviviruses (ISFs) that are presumably maintained primarily through vertical transmission in the insect host. Interestingly, ISFs are commonly found infecting important arbovirus vectors such as the mosquito Aedes aegypti. Cell-fusing agent virus (CFAV) was the first described ISF of mosquitoes more than four decades ago. Despite evidence for widespread CFAV infections in A.aegypti populations and for CFAV potential to interfere with arbovirus transmission, little is known about CFAV evolutionary history. Here, we generated six novel CFAV genome sequences by sequencing three new virus isolates and subjecting three mosquito samples to untargeted viral metagenomics. We used these new genome sequences together with published ones to perform a global phylogenetic analysis of CFAV genetic diversity. Although there was some degree of geographical clustering among CFAV sequences, there were also notable discrepancies between geography and phylogeny. In particular, CFAV sequences from Cambodia and Thailand diverged significantly, despite confirmation that A.aegypti populations from both locations are genetically close. The apparent phylogenetic discrepancy between CFAV and its A.aegypti host in Southeast Asia indicates that other factors than host population structure shape CFAV genetic diversity.

15.
J Virol ; 93(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31243123

RESUMO

Aedes aegypti mosquitoes are the main vectors of arthropod-borne viruses (arboviruses) of public health significance, such as the flaviviruses dengue virus (DENV) and Zika virus (ZIKV). Mosquitoes are also the natural hosts of a wide range of viruses that are insect specific, raising the question of their influence on arbovirus transmission in nature. Cell-fusing agent virus (CFAV) was the first described insect-specific flavivirus, initially discovered in an A. aegypti cell line and subsequently detected in natural A. aegypti populations. It was recently shown that DENV and the CFAV strain isolated from the A. aegypti cell line have mutually beneficial interactions in mosquito cells in culture. However, whether natural strains of CFAV and DENV interact in live mosquitoes is unknown. Using a wild-type CFAV isolate recently derived from Thai A. aegypti mosquitoes, we found that CFAV negatively interferes with both DENV type 1 and ZIKV in vitro and in vivo For both arboviruses, prior infection by CFAV reduced the dissemination titer in mosquito head tissues. Our results indicate that the interactions observed between arboviruses and the CFAV strain derived from the cell line might not be a relevant model of the viral interference that we observed in vivo Overall, our study supports the hypothesis that insect-specific flaviviruses may contribute to reduce the transmission of human-pathogenic flaviviruses.IMPORTANCE The mosquito Aedes aegypti carries several arthropod-borne viruses (arboviruses) that are pathogenic to humans, including dengue and Zika viruses. Interestingly, A. aegypti is also naturally infected with insect-only viruses, such as cell-fusing agent virus. Although interactions between cell-fusing agent virus and dengue virus have been documented in mosquito cells in culture, whether wild strains of cell-fusing agent virus interfere with arbovirus transmission by live mosquitoes was unknown. We used an experimental approach to demonstrate that cell-fusing agent virus infection reduces the propagation of dengue and Zika viruses in A. aegypti mosquitoes. These results support the idea that insect-only viruses in nature can modulate the ability of mosquitoes to carry arboviruses of medical significance and that they could possibly be manipulated to reduce arbovirus transmission.


Assuntos
Flavivirus/metabolismo , Mosquitos Vetores/virologia , Interferência Viral/fisiologia , Aedes/virologia , Animais , Arbovírus/metabolismo , Linhagem Celular , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/metabolismo , Flavivirus/genética , Flavivirus/isolamento & purificação , Humanos , Vírus de Insetos , Filogenia , Replicação Viral/fisiologia , Zika virus/isolamento & purificação , Zika virus/metabolismo , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...