Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Immunology ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38798068

RESUMO

Members of the Protein kinases D (PKD) family are described as regulators of T cell responses. From the two T cell-expressed isoforms PKD2 and PKD3, so far mainly the former was thoroughly investigated and is well understood. Recently, we have investigated also PKD3 using conventional as well as conditional T cell-specific knockout models. These studies suggested PKD3 to be a T cell-extrinsic regulator of the cells' fate. However, these former model systems did not take into account possible redundancies with the highly homologous PKD2. To overcome this issue and thus properly unravel PKD3's T cell-intrinsic functions, here we additionally used a mouse model overexpressing a constitutively active isoform of PKD3 specifically in the T cell compartment. These transgenic mice showed a slightly higher proportion of central memory T cells in secondary lymphoid organs and blood. This effect could not be explained via differences upon polyclonal stimulation in vitro, however, may be connected to the observed developmental aberrances in the CD8 single positive compartment during thymic development. Lastly, the observed alterations in the CD8+ T cell compartment did not impact proper immune response upon immunization with ovalbumin or in a subcutaneous tumour model suggesting only a small to absent biological relevance. Taking together the knowledge of all our published studies on PKD3 in the T cell compartment, we now conclude that T cell-intrinsic PKD3 is a fine-tuner of central memory T cell as well as CD8 single positive thymocyte development.

2.
Biomolecules ; 13(11)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-38002281

RESUMO

We recently identified protein kinase N1 (PKN1) as a negative gatekeeper of neuronal AKT protein kinase activity during postnatal cerebellar development. The developing cerebellum is specifically vulnerable to hypoxia-ischemia (HI), as it occurs during hypoxic-ischemic encephalopathy, a condition typically caused by oxygen deprivation during or shortly after birth. In that context, activation of the AKT cell survival pathway has emerged as a promising new target for neuroprotective interventions. Here, we investigated the role of PKN1 in an in vitro model of HI, using postnatal cerebellar granule cells (Cgc) derived from Pkn1 wildtype and Pkn1-/- mice. Pkn1-/- Cgc showed significantly higher AKT phosphorylation, resulting in reduced caspase-3 activation and improved survival after HI. Pkn1-/- Cgc also showed enhanced axonal outgrowth on growth-inhibitory glial scar substrates, further pointing towards a protective phenotype of Pkn1 knockout after HI. The specific PKN1 phosphorylation site S374 was functionally relevant for the enhanced axonal outgrowth and AKT interaction. Additionally, PKN1pS374 shows a steep decrease during cerebellar development. In summary, we demonstrate the pathological relevance of the PKN1-AKT interaction in an in vitro HI model and establish the relevant PKN1 phosphorylation sites, contributing important information towards the development of specific PKN1 inhibitors.


Assuntos
Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Camundongos , Hipóxia-Isquemia Encefálica/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipóxia , Cerebelo/metabolismo , Animais Recém-Nascidos
3.
Sci Adv ; 9(27): eadf6621, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37406115

RESUMO

Nuclear receptors (NRs) are implicated in the regulation of tumors and immune cells. We identify a tumor-intrinsic function of the orphan NR, NR2F6, regulating antitumor immunity. NR2F6 was selected from 48 candidate NRs based on an expression pattern in melanoma patient specimens (i.e., IFN-γ signature) associated with positive responses to immunotherapy and favorable patient outcomes. Correspondingly, genetic ablation of NR2F6 in a mouse melanoma model conferred a more effective response to PD-1 therapy. NR2F6 loss in B16F10 and YUMM1.7 melanoma cells attenuated tumor development in immune-competent but not -incompetent mice via the increased abundance of effector and progenitor-exhausted CD8+ T cells. Inhibition of NACC1 and FKBP10, identified as NR2F6 effectors, phenocopied NR2F6 loss. Inoculation of NR2F6 KO mice with NR2F6 KD melanoma cells further decreased tumor growth compared with NR2F6 WT mice. Tumor-intrinsic NR2F6 function complements its tumor-extrinsic role and justifies the development of effective anticancer therapies.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Animais , Camundongos , Imunoterapia , Melanoma/genética , Proteínas Repressoras/metabolismo
4.
Front Biosci (Landmark Ed) ; 28(1): 13, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36722280

RESUMO

Following gene expansion during evolution, today's phylogenetic tree of the NR2F family of nuclear orphan receptors in mammals is represented by three different isoforms: NR2F1, NR2F2, and NR2F6. Structural analysis of the NR2F family members has revealed that NR2F1 and NR2F2 are closely related and grouped together apart from NR2F6, which is more divergent in its biochemical characteristics. In this review, we highlight current knowledge on the cellular functions of NR2F family members. NR2F family members have been reported to be causally involved in carcinogenesis. Mechanistically, NR2F proteins are localized in the nucleus, where they bind to target DNA enhancer sequences and have been implicated in the regulation of de novo gene transcription, though this is not sufficiently understood. Based on apparently divergent and non-uniform expression patterns of the NR2F isoforms in different tissues and cell types, non-redundant functions of the individual family members appear to exist. Notably, NR2F2 appears to be more closely related functionally to NR2F6 than NR2F1. Along these lines, NR2F2 and NR2F6 have been reported to be involved in cellular neoplasia. Furthermore, enhanced expression of NR2F isoforms has been established as prognostic biomarkers in various cancer entities. Therefore, it is tempting to speculate that NR2F isoforms represent innovative targets for therapeutic intervention in defined types of cancer. Thus, NR2F family nuclear receptors can be viewed as gatekeepers balancing cell type-specific regulation of proliferation and the suppression of terminal differentiation in health and disease.


Assuntos
Carcinogênese , Núcleo Celular , Animais , Filogenia , Ciclo Celular , Mamíferos
5.
Front Immunol ; 13: 845235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052079

RESUMO

B cells are key mediators of humoral immunity. Mature B cells fall into various sub-classes that can be separated by their ontogeny, expression of cell surface markers, anatomical location, and function. B1 subsets play important roles in natural immunity and constitute the majority of B cells in newborns. In the adult, B1 cells predominate in the pleural and peritoneal cavities, while the mature B2 follicular subset makes up the major fraction of B cells in lymphoid tissue, although important subsets of antibody-secreting B1 cells are also present at these sites. B1 cells are the main producers of natural IgM but can also contribute to elimination of some pathogens, while B2 cells primarily mediate response to foreign antigens. The differential molecular underpinning of the B1 and B2 subsets remains incompletely understood. Here we demonstrate that germline-deficiency of the orphan nuclear receptor NR2F6 causes a partial loss of B1b and B2 B cells in the peritoneum while leaving peritoneal B1a cells unaltered. A competitive bone marrow chimera in Nr2f6+/+ host mice produced similar numbers of Nr2f6+/+ and Nr2f6-/- peritoneal B1b and B2 cells. The proliferation of Nr2f6-/- peritoneal B cells was not altered, while the migration marker CXCR5 was reduced on all subsets but Beta7-integrin was reduced only on peritoneal B1b and B2 cells. Similarly, B1b and B2 but not B1a cells, exhibited significantly reduced survival.


Assuntos
Linfócitos B , Peritônio , Proteínas Repressoras/metabolismo , Animais , Homeostase , Camundongos , Cavidade Peritoneal , Receptores Citoplasmáticos e Nucleares
6.
Front Immunol ; 13: 863568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35514965

RESUMO

This review focuses on current clinical and immunological aspects of cerebral malaria induced by Plasmodium falciparum infection. Albeit many issues concerning the inflammatory responses remain unresolved and need further investigations, current knowledge of the underlying molecular mechanisms is highlighted. Furthermore, and in the light of significant limitations in preventative diagnosis and treatment of cerebral malaria, this review mainly discusses our understanding of immune mechanisms in the light of the most recent research findings. Remarkably, the newly proposed CD8+ T cell-driven pathophysiological aspects within the central nervous system are summarized, giving first rational insights into encouraging studies with immune-modulating adjunctive therapies that protect from symptomatic cerebral participation of Plasmodium falciparum infection.


Assuntos
Malária Cerebral , Malária Falciparum , Linfócitos T CD8-Positivos , Humanos , Malária Cerebral/tratamento farmacológico , Malária Cerebral/terapia , Plasmodium falciparum
7.
Int J Mol Sci ; 23(10)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628145

RESUMO

Depending on the context, robust and durable T lymphocyte activation is either desirable, as in the case of anti-tumor responses, or unwanted, in cases of autoimmunity when chronic stimulation leads to self-tissue damage. Therefore, reliable in vivo models are of great importance to identify and validate regulatory pathways of T lymphocyte activation. Here, we describe an in vivo mixed-lymphocyte-reaction (MLR) approach, which is based on the so-called parent-into-F1 (P → F1) mouse model in combination with the congenic marker CD45.1/2 and cell proliferation dye-labeling. This setup allows us to track adoptively transferred allogenic CD4+ and CD8+ T lymphocytes and analyze their phenotype as well as the proliferation by flow cytometry in the blood and spleen. We could show hypo-reactive responses of T lymphocytes isolated from knockout mice with a known defect in T lymphocyte activation. Thus, this MLR-based in vivo model provides the opportunity to analyze positive regulators of T cell responses under physiological conditions of polyclonal T lymphocyte activation in vivo.


Assuntos
Ativação Linfocitária , Linfócitos T , Animais , Teste de Cultura Mista de Linfócitos , Camundongos , Baço
8.
Cell Commun Signal ; 20(1): 54, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440091

RESUMO

BACKGROUND: The Protein kinase D3 (PKD3) has been implicated in signal transduction downstream of the T cell receptor (TCR). However, its role for the activation of primary T lymphocytes has not been elucidated so far. METHODS: Expression of PKD isoforms in primary murine T cells was determined by RT-PCR and SDS-Page. A germline PKD3-knockout mouse line was analyzed for its immune response to OVA/alum intraperitoneal immunization. Phenotyping of the T cell compartment ex vivo as well as upon stimulation in vitro was performed by flow cytometry. Additionally, cytokine expression was assessed by flow cytometry, RT-PCR and Luminex technology. RESULTS: PKD expression in T cells is modulated by TCR stimulation, leading to a rapid down-regulation on mRNA and on protein level. PKD3-deficient mice respond to immunization with enhanced T follicular helper cell generation. Furthermore, peripheral PKD3-deficient CD4+ T cells express more interleukin-2 than wild type CD4+ T cells upon TCR stimulation ex vivo. However, purified naïve CD4+ T cells do not differ in their phenotype upon differentiation in vitro from wild type T cells. Moreover, we observed a shift towards an effector/memory phenotype of splenic T cells at steady state, which might explain the contradictory results obtained with pan-T cells ex vivo and naïve-sorted T cells. CONCLUSION: While PKD3-deficiency in vivo in mice leads to a skewing of the T cell compartment towards a more activated phenotype, this kinase seems to be dispensable for naïve CD4+ T cell differentiation in vitro. Video Abstract.


Assuntos
Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Linfócitos T , Animais , Linfócitos T CD4-Positivos , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo
9.
Cancer Immunol Res ; 10(4): 370, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362047

RESUMO

In this issue, Han and colleagues demonstrate in preclinical cancer models that genetic deletion of the E3 ubiquitin ligase Cbl proto-oncogene B (CBLB) in adoptively transferred CD8+ T cells induces resistance to regulatory T cells. CBLB deletion induces IFNγ and downmodulates TGFß/SMAD signaling. This ultimately enforces these cells to be way more effective against various cancers. See related article by Han et al., p. 437 (4).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Proto-Oncogênicas c-cbl , Proteínas Adaptadoras de Transdução de Sinal/genética , Linfócitos T CD8-Positivos/metabolismo , Interferon gama , Proteínas Proto-Oncogênicas c-cbl/deficiência , Proteínas Proto-Oncogênicas c-cbl/genética , Ubiquitina-Proteína Ligases/genética
10.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34272310

RESUMO

BACKGROUND: Casitas B lymphoma-b (Cbl-b) is a central negative regulator of cytotoxic T and natural killer (NK) cells and functions as an intracellular checkpoint in cancer. In particular, Th9 cells support mast cell activation, promote dendritic cell recruitment, enhance the cytolytic function of cytotoxic T lymphocytes and NK cells, and directly kill tumor cells, thereby contributing to tumor immunity. However, the role of Cbl-b in the differentiation and antitumor function of Th9 cells is not sufficiently resolved. METHODS: Using Cblb-/- mice, we investigated the effect of knocking out Cblb on the differentiation process and function of different T helper cell subsets, focusing on regulatory T cell (Treg) and Th9 cells. We applied single-cell RNA (scRNA) sequencing of in vitro differentiated Th9 cells to understand how Cbl-b shapes the transcriptome and regulates the differentiation and function of Th9 cells. We transferred tumor-model antigen-specific Cblb-/- Th9 cells into melanoma-bearing mice and assessed tumor control in vivo. In addition, we blocked interleukin (IL)-9 in melanoma cell-exposed Cblb-/- mice to investigate the role of IL-9 in tumor immunity. RESULTS: Here, we provide experimental evidence that Cbl-b acts as a rheostat favoring Tregs at the expense of Th9 cell differentiation. Cblb-/- Th9 cells exert superior antitumor activity leading to improved melanoma control in vivo. Accordingly, blocking IL-9 in melanoma cell-exposed Cblb-/- mice reversed their tumor rejection phenotype. Furthermore, scRNA sequencing of in vitro differentiated Th9 cells from naïve T cells isolated from wildtype and Cblb-/- animals revealed a transcriptomic basis for increased Th9 cell differentiation. CONCLUSION: We established IL-9 and Th9 cells as key antitumor executers in Cblb-/- animals. This knowledge may be helpful for the future improvement of adoptive T cell therapies in cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Receptores de Interleucina-9/metabolismo , Animais , Modelos Animais de Doenças , Camundongos
11.
Cancers (Basel) ; 13(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073258

RESUMO

Additional therapeutic targets suitable for boosting anti-tumor effector responses have been found inside effector CD4+ and CD8+ T cells. It is likely that future treatment options will combine surface receptor and intracellular protein targets. Utilizing germline gene ablation as well as CRISPR/Cas9-mediated acute gene mutagenesis, the nuclear receptor NR2F6 (nuclear receptor subfamily 2 group F member 6, also called Ear-2) has been firmly characterized as such an intracellular immune checkpoint in effector T cells. Targeting this receptor appears to be a strategy for improving anti-tumor immunotherapy responses, especially in combination with CTLA-4 and PD-1. Current preclinical experimental knowledge firmly validates the immune checkpoint function of NR2F6 in murine tumor models, which provides a promising perspective for immunotherapy regimens in humans in the near future. While the clinical focus remains on the B7/CD28 family members, protein candidate targets such as NR2F6 are now being investigated in laboratories around the world and in R&D companies. Such an alternative therapeutic approach, if demonstrated to be successful, could supplement the existing therapeutic models and significantly increase response rates of cancer patients and/or expand the reach of immune therapy regimens to include a wider range of cancer entities. In this perspective review, the role of NR2F6 as an emerging and druggable target in immuno-oncology research will be discussed, with special emphasis on the unique potential of NR2F6 and its critical and non-redundant role in both immune and tumor cells.

12.
Cell Death Dis ; 12(2): 187, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589606

RESUMO

Memory formation is a hallmark of T cell-mediated immunity, but how differentiation into either short-lived effector cells (SLECs, CD127-KLRG1+) or memory precursors cells (MPECs, CD127+KLRG1-) and subsequent regulation of long-term memory is adjusted is incompletely understood. Here, we show that loss of the nuclear orphan receptor NR2F6 in germ-line Nr2f6-deficient mice enhances antigen-specific CD8+ memory formation up to 70 days after bacterial infection with Listeria monocytogenes (LmOVA) and boosts inflammatory IFN-γ, TNFα, and IL-2 cytokine recall responses. Adoptive transfer experiments using Nr2f6-/- OT-I T-cells showed that the augmented memory formation is CD8+ T-cell intrinsic. Although the relative difference between the Nr2f6+/+ and Nr2f6-/- OT-I memory compartment declines over time, Nr2f6-deficient OT-I memory T cells mount significantly enhanced IFN-γ responses upon reinfection with increased clonal expansion and improved host antigen-specific CD8+ T-cell responses. Following a secondary adoptive transfer into naïve congenic mice, Nr2f6-deficient OT-I memory T cells are superior in clearing LmOVA infection. Finally, we show that the commitment to enhanced memory within Nr2f6-deficient OT-I T cells is established in the early phases of the antibacterial immune response and is IFN-γ mediated. IFN-γ blocking normalized MPEC formation of Nr2f6-deficient OT-I T cells. Thus, deletion or pharmacological inhibition of NR2F6 in antigen-specific CD8+ T cells may have therapeutic potential for enhancing early IFN-γ production and consequently the functionality of memory CD8+ T cells in vivo.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interferon gama/imunologia , Receptores Nucleares Órfãos/imunologia , Proteínas Repressoras/imunologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Repressoras/deficiência
13.
J Immunol Methods ; 487: 112878, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33031795

RESUMO

Here we show that an approach of in-vitro transcribed mRNA nucleofection expands the range of transfection of primary human T cells. It represents a reproducible and time-efficient technology, and is thus an ideal tool in basic research involving highly controlled in-vitro experiments with a gene of interest aiming at identifying its biological human T cell function.


Assuntos
RNA Mensageiro/biossíntese , Proteínas Repressoras/biossíntese , Linfócitos T/metabolismo , Transcrição Gênica , Transfecção , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Células Jurkat , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas Repressoras/genética , Fatores de Tempo
14.
Cell Commun Signal ; 18(1): 8, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937317

RESUMO

BACKGROUND: NR2F6 has been proposed as an alternative cancer immune checkpoint in the effector T cell compartment. However, a realistic assessment of the in vivo therapeutic potential of NR2F6 requires acute depletion. METHODS: Employing primary T cells isolated from Cas9-transgenic mice for electroporation of chemically synthesized sgRNA, we established a CRISPR/Cas9-mediated acute knockout protocol of Nr2f6 in primary mouse T cells. RESULTS: Analyzing these Nr2f6CRISPR/Cas9 knockout T cells, we reproducibly observed a hyper-reactive effector phenotype upon CD3/CD28 stimulation in vitro, highly reminiscent to Nr2f6-/- T cells. Importantly, CRISPR/Cas9-mediated Nr2f6 ablation prior to adoptive cell therapy (ACT) of autologous polyclonal T cells into wild-type tumor-bearing recipient mice in combination with PD-L1 or CTLA-4 tumor immune checkpoint blockade significantly delayed MC38 tumor progression and induced superior survival, thus further validating a T cell-inhibitory function of NR2F6 during tumor progression. CONCLUSIONS: These findings indicate that Nr2f6CRISPR/Cas9 knockout T cells are comparable to germline Nr2f6-/- T cells, a result providing an independent confirmation of the immune checkpoint function of lymphatic NR2F6. Taken together, CRISPR/Cas9-mediated acute Nr2f6 gene ablation in primary mouse T cells prior to ACT appeared feasible for potentiating established PD-L1 and CTLA-4 blockade therapies, thereby pioneering NR2F6 inhibition as a sensitizing target for augmented tumor regression. Video abstract.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Proteínas Repressoras/metabolismo , Linfócitos T/imunologia , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Antígeno CTLA-4/metabolismo , Células Cultivadas , Deleção de Genes , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mutagênese/genética , Neoplasias/patologia , Receptor de Morte Celular Programada 1/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Repressoras/deficiência , Reprodutibilidade dos Testes , Linfócitos T/efeitos dos fármacos
15.
Cell Commun Signal ; 17(1): 141, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694643

RESUMO

BACKGROUND: Protein kinase C θ has been established as an important signaling intermediate in T-effector-cell activation and survival pathways by controlling activity of the key transcription factors NF-κB and NFAT. Previous studies identified an activation-induced auto-phosphorylation site at Thr-219, located between the tandem C1 domains of the regulatory fragment in PKCθ, as a structural requirement for its correct membrane translocation and the subsequent transactivation of downstream signals leading to IL-2 production in a human T cell line. METHODS: The present work aimed to define the role of this phosphorylation switch on PKCθ in a physiological context through a homozygous T219A knockin mouse strain. T cell activation was analyzed by H3-thymidine uptake (proliferative response), qRT-PCR and luminex measurements (cytokine production). NFAT and NF-κB transactivation responses were estimated by Gel mobility shift and Alpha Screen assays. Frequencies of T cell subsets were analyzed by flow cytometry. RESULTS: Despite a normal T cell development, in vitro activated effector T cells clearly revealed a requirement of Thr-219 phosphorylation site on PKCθ for a transactivation of NF-κB and NFAT transcription factors and, subsequently, robust IL-2 and IFN-γ expression. CONCLUSION: This phenotype is reminiscent of the PKCθ knockout T cells, physiologically validating that this (p) Thr-219 auto-phosphorylation site indeed critically regulates PKCθ function in primary mouse T cells.


Assuntos
Técnicas de Introdução de Genes , Fenótipo , Proteína Quinase C-theta/genética , Proteína Quinase C-theta/metabolismo , Animais , Citocinas/metabolismo , Camundongos , Linfócitos T/citologia , Linfócitos T/metabolismo
16.
Cell Rep ; 28(11): 2878-2891.e5, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509749

RESUMO

CD4 T follicular helper (Tfh) cells are specialized in helping B cells during the germinal center (GC) reaction and ultimately promote long-term humoral immunity. Here we report that loss of the nuclear orphan receptor NR2F6 causes enhanced survival and accumulation of Tfh cells, GC B cells, and plasma cells (PCs) following T cell-dependent immunization. Nr2f6-deficient CD4 T cell dysfunction is the primary cause of cell accumulation. Cytokine expression in Nr2f6-deficient Tfh cells is dysregulated, and Il21 expression is enhanced. Mechanistically, NR2F6 binds directly to the interleukin 21 (IL-21) promoter and a conserved noncoding sequence (CNS) near the Il21 gene in resting CD4+ T cells. During Tfh cell differentiation, this direct NR2F6 DNA interaction is abolished. Enhanced Tfh cell accumulation in Nr2f6-deficient mice can be reverted by blocking IL-21R signaling. Thus, NR2F6 is a critical negative regulator of IL-21 cytokine production in Tfh cells and prevents excessive Tfh cell accumulation.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Centro Germinativo/imunologia , Interleucinas/metabolismo , Proteínas Repressoras/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Transferência Adotiva , Animais , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Células Cultivadas , Imunoprecipitação da Cromatina , Centro Germinativo/citologia , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Plasmócitos/imunologia , Regiões Promotoras Genéticas , Receptores de Interleucina-21/metabolismo , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Linfócitos T Auxiliares-Indutores/metabolismo
18.
Front Immunol ; 10: 1070, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139192

RESUMO

Gastrointestinal (GI) homeostasis is strongly dependent on nuclear receptor (NR) functions. They play a variety of roles ranging from nutrient uptake, sensing of microbial metabolites, regulation of epithelial intestinal cell integrity to shaping of the intestinal immune cell repertoire. Several NRs are associated with GI pathologies; therefore, systematic analysis of NR biology, the underlying molecular mechanisms, and regulation of target genes can be expected to help greatly in uncovering the course of GI diseases. Recently, an increasing number of NRs has been validated as potential drug targets for therapeutic intervention in patients with inflammatory bowel disease (IBD). Besides the classical glucocorticoids, especially PPARγ, VDR, or PXR-selective ligands are currently being tested with promising results in clinical IBD trials. Also, several pre-clinical animal studies are being performed with NRs. This review focuses on the complex biology of NRs and their context-dependent anti- or pro-inflammatory activities in the regulation of gastrointestinal barrier with special attention to NRs already pharmacologically targeted in clinic and pre-clinical IBD treatment regimens.


Assuntos
Doenças Inflamatórias Intestinais/etiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Microbioma Gastrointestinal/fisiologia , Homeostase , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , PPAR gama/fisiologia , Receptor de Pregnano X/fisiologia , Receptores de Calcitriol/fisiologia , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos
19.
Cell Commun Signal ; 17(1): 56, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138259

RESUMO

BACKGROUND: The protein kinase C theta (PKCθ) has an important and non-redundant function downstream of the antigen receptor and co-receptor complex in T lymphocytes. PKCθ is not only essential for activation of NF-κB, AP-1 and NFAT and subsequent interleukin-2 expression, but also critical for positive selection and development of regulatory T lymphocytes in the thymus. Several domains regulate its activity, such as a pseudosubstrate sequence mediating an auto-inhibitory intramolecular interaction, the tandem C1 domains binding diacylglycerol, and phosphorylation at conserved tyrosine, threonine as well as serine residues throughout the whole length of the protein. To address the importance of the variable domain V1 at the very N-terminus, which is encoded by exon 2, a mutated version of PKCθ was analyzed for its ability to stimulate T lymphocyte activation. METHODS: T cell responses were analyzed with promoter luciferase reporter assays in Jurkat T cells transfected with PKCθ expression constructs. A mouse line expressing mutated instead of wild type PKCθ was analyzed in comparison to PKCθ-deficient and wild type mice for thymic development and T cell subsets by flow cytometry and T cell activation by quantitative RT-PCR, luminex analysis and flow cytometry. RESULTS: In cell lines, the exon 2-replacing mutation impaired the transactivation of interleukin-2 expression by constitutively active mutant form of PKCθ. Moreover, analysis of a newly generated exon 2-mutant mouse line (PKCθ-E2mut) revealed that the N-terminal replacement mutation results in an hypomorph mutant of PKCθ combined with reduced PKCθ protein levels in CD4+ T lymphocytes. Thus, PKCθ-dependent functions in T lymphocytes were affected resulting in impaired thymic development of single positive T lymphocytes in vivo. In particular, there was diminished generation of regulatory T lymphocytes. Furthermore, early activation responses such as interleukin-2 expression of CD4+ T lymphocytes were significantly reduced even though cell viability was not affected. Thus, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. CONCLUSION: Taken together, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. Both our in vitro T cell culture experiments and ex vivo analyses of a PKCθ-E2-mutant mouse line independently validate the importance of PKCθ downstream of the antigen-receptor complex for activation of CD4+ T lymphocytes.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Ativação Linfocitária , Mutação , Proteína Quinase C-theta/genética , Animais , Células HEK293 , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Proteína Quinase C-theta/metabolismo
20.
Cell Rep ; 26(10): 2681-2691.e5, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30840890

RESUMO

Fc receptor for IgM (FcµR)-deficient mice display dysregulated function of neutrophils, dendritic cells, and B cells. The relevance of FcµR to human T cells is still unknown. We show that FcµR is mostly stored inside the cell and that surface expression is tightly regulated. Decreased surface expression on T cells from elderly individuals is associated with alterations in the methylation pattern of the FCMR gene. Binding and internalization of IgM stimulate transport of FcµR to the cell surface to ensure sustained IgM uptake. Concurrently, IgM accumulates within the cell, and the surface expression of other receptors increases, among them the T cell receptor (TCR) and costimulatory molecules. This leads to enhanced TCR signaling, proliferation, and cytokine release, in response to low, but not high, doses of antigen. Our findings indicate that FcµR is an important regulator of T cell function and reveal an additional mode of interaction between B and T cells.


Assuntos
Receptores Fc/imunologia , Linfócitos T/imunologia , Adulto , Metilação de DNA , Regulação para Baixo , Humanos , Imunoglobulina M/metabolismo , Ativação Linfocitária , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Fc/biossíntese , Receptores Fc/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...