Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Heliyon ; 10(7): e29015, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596120

RESUMO

Presently, it is known that the progression of obesity concomitantly leads to polycystic ovary syndrome and infertility. This study aimed to evaluate the potential effects of metformin (M; insulin secretagogues) and gliclazide (G; insulin sensitizer) alone and their combination at different doses to treat obesity-induced PCOS. High high-fat diet was given to all female Wistar rats for nine weeks to induce obesity except for the normal control group which received a normal chow diet. Estradiol valerate (0.8 mg/kg) was also given to all obese rats to induce polycystic ovarian syndrome. After the induction, M (100, 300 mg/kg) and G (5, 10 mg/kg) were given orally either individually or in combination for 28 days. The notable (p < 0.0001) reduction in body weight and blood glucose level was observed in treatment groups in contrast to disease control (DCG). The marked (p < 0.05-0.0001) decrease in hemocylated hemoglobin, serum insulin, cholesterol, triglycerides, and testosterone was observed in treated groups, notably in combination groups (M100+G10 mg/kg) in contrast to DCG. There was a considerable (p < 0.01-0.0001) increase in progesterone E2, estradiol, luteinizing, and follicle-stimulating hormones in treated groups as compared to DCG. Treatment with M and G treated groups also exhibited marked (p < 0.05-0.0001) increases in SOD, CAT, and GSH while decreased in NO and MDA levels in ovary tissue as evidenced by the histological study of the ovary. Treatment with M and G alone and in combination significantly (p < 0.0001) restored the serum IL-6, NrF2, and NF-κB levels as compared to DCG. The results inveterate that the M and G combination (M100+G10, and M300+G10) was useful in treating obesity-induced infertility due to antioxidant properties, hypolipidemic effects, and modulation of inflammatory markers.

2.
Asian J Pharm Sci ; 19(1): 100887, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38419762

RESUMO

Rheumatoid Arthritis (RA) is an autoimmune disorder that hinders the normal functioning of bones and joints and reduces the quality of human life. Every year, millions of people are diagnosed with RA worldwide, particularly among elderly individuals and women. Therefore, there is a global need to develop new biomaterials, medicines and therapeutic methods for treating RA. This will improve the Healthcare Access and Quality Index and also relieve administrative and financial burdens on healthcare service providers at a global scale. Hydrogels are soft and cross-linked polymeric materials that can store a chunk of fluids, drugs and biomolecules for hydration and therapeutic applications. Hydrogels are biocompatible and exhibit excellent mechanical properties, such as providing elastic cushions to articulating joints by mimicking the natural synovial fluid. Hence, hydrogels create a natural biological environment within the synovial cavity to reduce autoimmune reactions and friction. Hydrogels also lubricate the articulating joint surfaces to prevent degradation of synovial surfaces of bones and cartilage, thus exhibiting high potential for treating RA. This work reviews the progress in injectable and implantable hydrogels, synthesis methods, types of drugs, advantages and challenges. Additionally, it discusses the role of hydrogels in targeted drug delivery, mechanistic behaviour and tribological performance for RA treatment.

3.
J Drug Target ; 32(1): 21-32, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010097

RESUMO

This review has focused on the development of mRNA nano-vaccine and the biochemical interactions of anti-COVID-19 mRNA vaccines with various disease conditions and age groups. It studied five major groups of individuals with different disease conditions and ages, including allergic background, infarction background, adolescent, and adult (youngsters), pregnant women, and elderly. All five groups had been reported to have background-related adverse effects. Allergic background individuals were observed to have higher chances of experiencing allergic reactions and even anaphylaxis. Individuals with an infarction background had a higher risk of vaccine-induced diseases, e.g. pneumonitis and interstitial lung diseases. Pregnant women were seen to suffer from obstetric and gynecological adverse effects after receiving vaccinations. However, interestingly, the elderly individuals (> 65 years old) had experienced milder and less frequent adverse effects compared to the adolescent (<19 and >9 years old) and young adulthood (19-39 years old), or middle adulthood (40-59 years old) age groups, while middle to late adolescent (14-17 years old) was the riskiest age group to vaccine-induced cardiovascular manifestations.


Assuntos
COVID-19 , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hipersensibilidade , Gravidez , Adolescente , Adulto , Idoso , Humanos , Feminino , Adulto Jovem , Criança , Pessoa de Meia-Idade , COVID-19/prevenção & controle , Nanovacinas , Vacinas de mRNA , RNA Mensageiro , Infarto
4.
Curr Gene Ther ; 24(2): 122-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37861022

RESUMO

BACKGROUND: MicroRNAs (miRNA) are small noncoding RNAs that play a significant role in the regulation of gene expression. The literature has explored the key involvement of miRNAs in the diagnosis, prognosis, and treatment of various neurodegenerative diseases (NDD), such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). The miRNA regulates various signalling pathways; its dysregulation is involved in the pathogenesis of NDD. OBJECTIVE: The present review is focused on the involvement of miRNAs in the pathogenesis of NDD and their role in the treatment or management of NDD. The literature provides comprehensive and cutting-edge knowledge for students studying neurology, researchers, clinical psychologists, practitioners, pathologists, and drug development agencies to comprehend the role of miRNAs in the NDD's pathogenesis, regulation of various genes/signalling pathways, such as α-synuclein, P53, amyloid-ß, high mobility group protein (HMGB1), and IL-1ß, NMDA receptor signalling, cholinergic signalling, etc. Methods: The issues associated with using anti-miRNA therapy are also summarized in this review. The data for this literature were extracted and summarized using various search engines, such as Google Scholar, Pubmed, Scopus, and NCBI using different terms, such as NDD, PD, AD, HD, nanoformulations of mRNA, and role of miRNA in diagnosis and treatment. RESULTS: The miRNAs control various biological actions, such as neuronal differentiation, synaptic plasticity, cytoprotection, neuroinflammation, oxidative stress, apoptosis and chaperone-mediated autophagy, and neurite growth in the central nervous system and diagnosis. Various miRNAs are involved in the regulation of protein aggregation in PD and modulating ß-secretase activity in AD. In HD, mutation in the huntingtin (Htt) protein interferes with Ago1 and Ago2, thus affecting the miRNA biogenesis. Currently, many anti-sense technologies are in the research phase for either inhibiting or promoting the activity of miRNA. CONCLUSION: This review provides new therapeutic approaches and novel biomarkers for the diagnosis and prognosis of NDDs by using miRNA.


Assuntos
Doença de Alzheimer , Doença de Huntington , MicroRNAs , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Doença de Parkinson/terapia , Doença de Huntington/genética
6.
Sci Total Environ ; 891: 164596, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37279810

RESUMO

Micro-and nanoplastics (M/NPs) are emerging pollutants released into the food, beverages, and environment from plastic products by weathering, oxidative damage, and mechanical stress. Detection of M/NPs in food and beverages is a vital factor in preventing the deleterious effects of these materials on human health and other ecosystems. Analytical strategies for M/NPs demonstrate numerous drawbacks, including detection sensitivity limitation, matrix digestion, and sample pretreatment. Moreover, the content of M/NPs in food and beverages varies with food production, storage, and transport, making it hard to precisely detect them. The contamination route is a key factor affecting the level of M/NPs in food and beverages. Strict control over the contamination route could be beneficial in preventing M/NP pollution. This review highlighted routes of food and beverage contamination by M/NPs, various pros and cons of detection strategies, and critical interpretation of reported techniques, including microscopy, spectroscopy, light scattering, and thermal methods. Besides, the bottlenecks of detection and quantification approaches for M/NPs and recent advancements have also been highlighted. Much is still unknown concerning the fate, activities, and properties of M/NPs present in various matrices. This review aims to assist the investigators to tackle the drawbacks and pave the way for upcoming research, minimizing the health complications by regulating the control over M/NPs pollution.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Ecossistema , Plásticos , Poluição Ambiental
7.
Int J Biol Macromol ; 236: 123988, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907299

RESUMO

This study aimed to develop a robust approach for the early diagnosis and treatment of tumors. Short circular DNA nanotechnology synthesized a stiff and compact DNA nanotubes (DNA-NTs) framework. TW-37, a small molecular drug, was loaded into DNA-NTs for BH3-mimetic therapy to elevate the intracellular cytochrome-c levels in 2D/3D hypopharyngeal tumor (FaDu) cell clusters. After anti-EGFR functionalization, the DNA-NTs were tethered with a cytochrome-c binding aptamer, which can be applied to evaluate the elevated intracellular cytochrome-c levels via in situ hybridization (FISH) analysis and fluorescence resonance energy transfer (FRET). The results showed that DNA-NTs were enriched within the tumor cells via anti-EGFR targeting with a pH-responsive controlled release of TW-37. In this way, it initiated the triple inhibition of "BH3, Bcl-2, Bcl-xL, and Mcl-1". The triple inhibition of these proteins caused Bax/Bak oligomerization, leading to the perforation of the mitochondrial membrane. This led to the elevation of intracellular cytochrome-c levels, which reacted with the cytochrome-c binding aptamer to produce FRET signals. In this way, we successfully targeted 2D/3D clusters of FaDu tumor cells and achieved the tumor-specific and pH-triggered release of TW-37, causing tumor cell apoptosis. This pilot study suggests that anti-EGFR functionalized, TW-37 loaded, and cytochrome-c binding aptamer tethered DNA-NTs might be the hallmark for early tumor diagnosis and therapy.


Assuntos
Neoplasias Hipofaríngeas , Nanotubos , Humanos , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Neoplasias Hipofaríngeas/tratamento farmacológico , Medicina de Precisão , Projetos Piloto , Citocromos c/metabolismo , DNA
8.
J Control Release ; 352: 98-120, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36243235

RESUMO

In this study, novel multilayered magnetic nanoparticles (ML-MNPs) loaded with DNase and/or vancomycin (Vanc) were fabricated for eliminating multispecies biofilms. Iron-oxide MNPs (IO-core) (500-800 nm) were synthesized via co-precipitation; further, the IO-core was coated with heavy-metal-based layers (Ag and MoS2 NPs) using solvent evaporation. DNase and Vanc were loaded onto the outermost layer of the ML-MNP formed by nanoporous MoS2 NPs through physical deposition and adsorption. The biofilms of S. mutans or E. faecalis (or both) were formed in a brain-heart-infusion broth (BHI) for 3 days, followed by treatment with ML-MNPs for 24 h. The results revealed that coatings of Ag (200 nm) and ultrasmall MoS2 (20 nm) were assembled as outer layers of ML-MNPs successfully, and they formed Ag-Fe3O4@MoS2 MNPs (3-5 µm). The DNase-Vanc-loaded MNPs caused nanochannels digging and resulted in the enhanced penetration of MNPs towards the bottom layers of biofilm, which resulted in a decrease in the thickness of the 72-h biofilm from 48 to 58 µm to 0-4 µm. The sustained release of Vanc caused a synergistic bacterial killing up to 96%-100%. The heavy-metal-based layers of MNPs act as nanozymes to interfere with bacterial metabolism and proliferation, which adversely affects biofilm integrity. Further, loading DNase/Vanc onto the nanoporous-MoS2-layer of ML-MNPs promoted nanochannel creation through the biofilm. Therefore, DNase-and Vanc-loaded ML-MNPs exhibited potent effects on biofilm disruption and bacterial killing.


Assuntos
Antibacterianos , Nanocompostos , Antibacterianos/farmacologia , Molibdênio , Biofilmes , Bactérias , Vancomicina , Desoxirribonucleases
9.
Biomed Pharmacother ; 156: 113840, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252356

RESUMO

Cordia rothii Roem. & Schult. possesses various beneficial effects and is traditionally used in folk medicine against liver diseases but its molecular mechanism remains unclear. Antioxidant and hepatoprotective effects of Cordia rothii methanolic fraction (CRMF) were investigated in CCl4-induced liver injury. Antioxidant effects were evaluated using DPPH assay, ferric thiocyanate (FTC) assay, and HepG2 cells. A qualitative analysis of phytochemicals was carried out by gas chromatography-mass spectrometry (GC-MS). The hepatoprotective effects of CRMF were assessed against CCl4-induced liver damage in rats. Our results showed that CRMF significantly increased cell viability against CCl4-induced HepG2 cells. The in vivo results showed that CRMF significantly reduced the level of aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin, hepatic antioxidant enzymes, including superoxide dismutase, malondialdehyde, and increased glutathione level. Normal hepatocyte integrity and microstructures were observed in histopathological results. Furthermore, the mRNA level of inflammatory mediators including interleukon (IL)-1ß, IL-6, TNF-α, nuclear factor kappa B (NF-KB), IL-10 and nuclear factor-erythroid factor 2-related factor 2 (NrF2) were reverted in CRMF pretreatment groups. Thus, CRMF exhibited strong antioxidant, and hepatoprotective activities, which may involve Nrf2-NFκB pathways.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Cordia , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Tetracloreto de Carbono/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , NF-kappa B/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Estresse Oxidativo , Fígado , Aspartato Aminotransferases/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
11.
Int J Biol Macromol ; 220: 520-527, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988727

RESUMO

Nanoscale double-crossovers (DX), antiparallel (A), and even half-turns-perimeter (E) DNA tiles (DAE-tiles) with rectangular shapes can be packed into large arrays of micrometer-scale lattices. But the features and mechanical strength of DNA assembly made from differently shaped large-sized DAE DNA tiles and the effects of various geometries on the final DNA assembly are yet to be explored. Herein, we focused on examining DNA lattices synthesized from DX bi-triangular, DNA tiles (T) with concave and convex regions along the perimeter of the tiles. The bi-triangular DNA tiles "T(A) and T(B)" were synthesized by self-assembling the freshly prepared short circular scaffold (S) strands "S(A) and S(B)", each of 106 nucleotides (NT) lengths. The tiles "T(A) and T(B)" were then coupled together to get assembled via sticky ends. It resulted in the polymerization of DNA tiles into large-sized DNA lattices with giant micrometer-scale dimensions to form the "T(A) + T(B)" assembly. These DNA macro-frameworks were visualized "in the air" under atomic force microscopy (AFM) employing tapping mode. We have characterized how curvature in DNA tiles may undergo transitions and transformations to adjust the overall torque, strain, twists, and the topology of the final self-assembly array of DNA tiles. According to our results, our large-span DX tiles assembly "T(A) + T(B)" despite the complicated curvatures and mechanics, was successfully packed into giant DNA lattices of the width of 30-500 nm and lengths of 500 nm to over 10 µm. Conclusively, the micrometer-scale "T(A) + T(B)" framework assembly was rigid, stable, stiff, and exhibited enough tensile strength to form monocrystalline lattices.


Assuntos
Nanoestruturas , DNA/química , Substâncias Macromoleculares , Microscopia de Força Atômica , Nanoestruturas/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico , Nucleotídeos
14.
Urologia ; 89(3): 315-328, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34978224

RESUMO

The assessment and management of urologic chronic pelvic pain syndrome (UCPPS), is controversial. It is classified by voiding symptoms, pelvic pain, and bladder pain, which is weekly treated, weekly understood, and bothersome. In the aspect of clinical efforts and research to help people with this syndrome have been hampered by the deficiency of a widely reliable, accepted, and a valuable tool to evaluate the patient symptoms and quality of life (QoL) impact. However, the etiology comes into sight is multifactorial, and available treatment options have been imprecise considerably in present years. We compiled the published literature on the assessment of the syndrome, a tentative role of pharmacological and non-pharmacological (conservative, alternative, and invasive therapy) interventions in eradicating the disease as well as improving symptoms. The previously published literature on animal models has established the association of immune systems in the etiology, pathogenesis, and progression of the disease. The UPOINT system for clinical phenotyping of UCPPS patients has six predefined domains that direct multimodal therapy, which would lead to significant symptom improvement in the medical field. The narrative review aims to scrutinize the fluctuating scientist's views on the evaluation of patient and multimodal treatment of the UPOINT system.


Assuntos
Dor Crônica , Prostatite , Doença Crônica , Dor Crônica/terapia , Humanos , Masculino , Dor Pélvica/diagnóstico , Dor Pélvica/etiologia , Dor Pélvica/terapia , Prostatite/terapia , Qualidade de Vida , Síndrome
15.
Arch Environ Occup Health ; 77(1): 51-67, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33138742

RESUMO

BACKGROUND: Nitrate is an inorganic compound that occurs naturally in all surface and groundwater, although higher concentrations tend to occur only where fertilizers are used on the land. The regulatory limit for nitrate in public drinking water supplies was set to protect against infant methemoglobinemia, but other health effects were not considered. Risk of specific cancers and congenital disabilities may be increased when the nitrate is ingested, and nitrate is reduced to nitrite, which can react with amines and amides by nitrosation to form N-nitroso compounds which are known animal carcinogens. This study aims to evaluate the association between nitrate ingested through drinking water and the risk of developing cancers in humans. METHODS: We performed a systematic review following PRISMA and MOOSE guidelines. A literature search was performed using PubMed, EMBASE, the Cochrane Library databases, Web of Science and Google Scholars in the time-frame from their inception to January 2020, for potentially eligible publications. STATA version 12.0 was used to conduct meta-regression and a two-stage meta-analysis. RESULTS: A total of 48 articles with 13 different cancer sites were used for analysis. The meta-regression analysis showed stomach cancer had an association with the median dosage of nitrate from drinking water (t = 3.98, p = 0.0001, and adjusted R-squared = 50.61%), other types of cancers didn't show any association. The first stage of meta-analysis showed there was an association only between the risk of brain cancer & glioma (OR = 1.15, 95% CI: 1.06, 1.24) and colon cancer (OR = 1.11, 95% CI: 1.04, 1.17) and nitrate consumption in the analysis comparing the highest ORs versus the lowest. The 2nd stage showed there was an association only between the risk colon cancer (OR = 1.14, 95% CI: 1.04, 1.23) and nitrate consumption in the analysis comparing all combined higher ORs versus the lowest. CONCLUSION: This study showed that there is an association between the intake of nitrate from drinking water and a type of cancer in humans. The effective way of controlling nitrate concentrations in drinking water is the prevention of contamination (water pollution). Further research work on this topic is needed.


Assuntos
Água Potável/química , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia , Nitratos/efeitos adversos , Nitratos/análise , Humanos , Risco , Poluentes Químicos da Água , Abastecimento de Água
16.
Birth Defects Res ; 113(19): 1407-1421, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34553514

RESUMO

OBJECTIVES: Tramadol, an atypical opioid, is clinically efficacious in treating moderate to severe pain. The aim of current study was to find out the toxicological effects of tramadol exposure to pregnant rats and fetuses during the late phase of pregnancy. METHODS: Wistar pregnant rats were exposed to 1.25, 2.5, or 5 mg/kg/day tramadol from 14th to 20th day of pregnancy. The same therapy was given to nonpregnant rats for 7 days. The body weight, oral glucose and lipid tolerance tests, and effect on complete blood parameters in both pregnant and nonpregnant rats were determined. On 20th day, maternal placentas were excised and weighed while fetuses were observed for any deformity and growth retardation. Oxidative stress biomarkers were estimated in the liver and kidney tissue homogenates of the pregnant and nonpregnant rats while the whole fetus homogenate was processed for the same. Moreover, histopathology of the liver and kidney of pregnant and nonpregnant rats were carried out. RESULTS: Tramadol administration did not significantly alter the area under curve of the blood glucose and triglyceride levels in both the pregnant and nonpregnant rats. It reduced the live fetuses, placental weights, fetal length, and fetal weights. Tramadol treated pregnant rats showed significantly (p < .05) reduced red blood cells, hematocrit, hemoglobin, and platelets with reference to control group. Similarly, structural abnormalities and malfunctioning of the liver and kidney of pregnant rats were instituted; however, it did not affect the structural integrity of nonpregnant rats. A substantial (p < .001-.0001) altered glutathione and malondialdehyde levels in the fetuses, pregnant, and nonpregnant animals (tissue homogenates) at all dosage levels were indicative of tramadol induced oxidative stress. Furthermore, tramadol exposure resulted in more significant (p < .01-.001) alteration of lipid profile in the pregnant than the nonpregnant animals. CONCLUSION: Acquired results suggested the maternotoxic and fetotoxic effects of tramadol exposure during the late gestation period.


Assuntos
Tramadol , Animais , Feminino , Feto , Rim , Placenta , Gravidez , Ratos , Ratos Wistar , Tramadol/toxicidade
17.
Ann Glob Health ; 87(1): 84, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458108

RESUMO

Background: There is ongoing scientific evidence pointing out the adverse effects of conflict on population health and development. Union of Comoros has experienced nearly two decades of political instability and military rule. This comprehensive review was carried out to ask whether the health crisis in Comoros is attributable to the consequences of the chronic political instability. Methods: This study involved a series of semi-structured interviews with key informants complemented by a comprehensive literature search of electronic databases and grey literature. A literature search was performed using all identified keywords associated with health indicators in Comoros to identify potential eligible publications in both English and French from 1975 to July 2020. Results: The analysis demonstrated that political instability and lack of proper leadership from the Government undermine the establishment of health policies which contributed dramatically to the decline in health performance. Additionally, the resurgence and emergence of old and new diseases such as cholera, chikungunya, malaria, HIV/AIDS as indicators of inadequate health services were most likely during political turmoil. Data also showed an out-migration of the health workforce and an increased overseas medical treatment demand, which indicate less attractive working conditions and weak health systems in the country. Meanwhile, an increasing performance of health status indicators was observed after the comprehensive peace process of the 2000-Fomboni Declaration. Conclusions: The chronic political instability in Comoros has contributed to the health crisis facing the Union of Comoros. It has hampered the implementation of proper institutions, which might guarantee the socio-economic development and prosperity of the population. Further studies were needed to evaluate the health burden associated with the two decades of political instability and military rule.


Assuntos
Atenção à Saúde/organização & administração , Política , Adolescente , Criança , Comores , Feminino , Governo , Acessibilidade aos Serviços de Saúde , Humanos , Recém-Nascido , Masculino , Gravidez
18.
Int J Biol Macromol ; 188: 657-669, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34371047

RESUMO

Biofunctional materials with nanomechanical parameters similar to bone tissue may promote the adherence, migration, proliferation, and differentiation of pre-osteoblasts. In this study, deoxyribonucleic acid (DNA) nanoporous scaffold (DNA-NPS) was synthesized by the polymerization of rectangular and double-crossover (DX) DNA tiles. The diagonally precise polymerization of nanometer-sized DNA tiles (A + B) through sticky end cohesion gave rise to a micrometer-sized porous giant-sheet material. The synthesized DNA-NPS exhibited a uniformly distributed porosity with a size of 25 ± 20 nm. The morphology, dimensions, sectional profiles, 2-dimensional (2D) layer height, texture, topology, pore size, and mechanical parameters of DNA-NPS have been characterized by atomic force microscopy (AFM). The size and zeta potential of DNA-NPS have been characterized by the zeta sizer. Cell biocompatibility, proliferation, and apoptosis have been evaluated by flow cytometry. The AFM results confirmed that the fabricated DNA-NPS was interconnected and uniformly porous, with a surface roughness of 0.125 ± 0.08035 nm. The elastic modulus of the DNA-NPS was 22.45 ± 8.65 GPa, which was comparable to that of native bone tissue. DNA-NPS facilitated pre-osteoblast adhesion, proliferation, and osteogenic differentiation. These findings indicated the potential of 2D DNA-NPS in promoting bone tissue regeneration.


Assuntos
Diferenciação Celular , DNA/química , Nanoporos , Osteoblastos/citologia , Osteogênese , Alicerces Teciduais/química , Animais , Bioensaio , Linhagem Celular , Fluorescência , Hidrodinâmica , Camundongos , Microscopia de Força Atômica , Imagem Óptica , Tamanho da Partícula , Polimerização , Poliestirenos/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização
19.
Arch Physiol Biochem ; : 1-14, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34403619

RESUMO

The current research was aimed to evaluate the antidiabetic activity of Terminalia citrina methanolic extract (TCME) by streptozotocin-induced diabetes in male Wistar rats. TCME exhibited better in-vitro antioxidant and alpha-amylase inhibitory activity as compared to other tested extracts. TCME at 250, 500, and 750 mg/kg showed notable (p < .05) antidiabetic potential by lowering fasting blood glucose level, restoring lipid level, serum amylase, HbA1c, kidney, and liver function tests as coevidenced from histological findings of the liver, pancreas, and kidney. TCME remarkably reinstated the antioxidant enzymatic activities (CAT: 0.181 ± 0.011 IU/mg protein, SOD: 21.45 ± 1.53 IU/mg protein) and reduced lipid peroxidation level (40.60 ± 2.41 µM/mg protein) in the liver and kidney tissue of diabetic rats at 750 mg/kg dose. The acute and subacute oral toxicity study of TCME exhibited no clinical toxicity signs and mortality. Its GC-MS spectrum unveiled the existence of 10-octadecenoic acid and other compounds which might have contributed to antidiabetic potential.

20.
J Pharm Anal ; 11(3): 330-339, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34277121

RESUMO

The study aimed to achieve enhanced targeted cytotoxicity and cell-internalization of cisplatin-loaded deoxyribonucleic acid-nanothread (CPT-DNA-NT), mediated by scavenger receptors into HeLa cells. DNA-NT was developed with stiff-topology utilizing circular-scaffold to encapsulate CPT. Atomic force microscopy (AFM) characterization of the DNA-NT showed uniformity in the structure with a diameter of 50-150 nm and length of 300-600 nm. The successful fabrication of the DNA-NT was confirmed through native-polyacrylamide gel electrophoresis analysis, as large the molecular-weight (polymeric) DNA-NT did not split into constituting strands under applied current and voltage. The results of cell viability confirmed that blank DNA-NT had the least cytotoxicity at the highest concentration (512 nM) with a viability of 92% as evidence of its biocompatibility for drug delivery. MTT assay showed superior cytotoxicity of CPT-DNA-NT than that of the free CPT due to the depot release of CPT after DNA-NT internalization. The DNA-NT exhibited targeted cell internalizations with the controlled intracellular release of CPT (from DNA-NT), as illustrated in confocal images. Therefore, in vitro cytotoxicity assessment through flow cytometry showed enhanced apoptosis (72.7%) with CPT-DNA-NT (compared to free CPT; 64.4%). CPT-DNA-NT, being poly-anionic, showed enhanced endocytosis via scavenger receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...