Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ital J Food Saf ; 12(2): 11123, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37405140

RESUMO

Aflatoxin M1 (AFM1) is a well-known carcinogenic compound that may contaminate milk and dairy products. Thus, with the regulation 1881/2006, the European Union established a concentration limit for AFM1 in milk and insisted on the importance of defining enrichment factors (EFs) for cheese. In 2019, the Italian Ministry of Health proposed four different EFs based on cheese's moisture content on a fat-free basis (MMFB) for bovine dairy products. This study aimed to define the EFs of cheese with different MFFB. The milk used for cheesemaking was naturally contaminated with different AFM1 concentrations. Results showed that all the EF average values from this study were lower than those of the Italian Ministry of Health. Hence, the current EFs might need to be reconsidered for a better categorization of AFM1 risk in cheese.

2.
Brain ; 135(Pt 9): 2750-65, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22915735

RESUMO

Activation of the nuclear factor κB/c-Rel can increase neuronal resilience to pathological noxae by regulating the expression of pro-survival manganese superoxide dismutase (MnSOD, now known as SOD2) and Bcl-xL genes. We show here that c-Rel-deficient (c-rel(-/-)) mice developed a Parkinson's disease-like neuropathology with ageing. At 18 months of age, c-rel(-/-) mice exhibited a significant loss of dopaminergic neurons in the substantia nigra pars compacta, as assessed by tyrosine hydroxylase-immunoreactivity and Nissl staining. Nigral degeneration was accompanied by a significant loss of dopaminergic terminals and a significant reduction of dopamine and homovanillic acid levels in the striatum. Mice deficient of the c-Rel factor exhibited a marked immunoreactivity for fibrillary α-synuclein in the substantia nigra pars compacta as well as increased expression of divalent metal transporter 1 (DMT1) and iron staining in both the substantia nigra pars compacta and striatum. Aged c-rel(-/-) mouse brain were characterized by increased microglial reactivity in the basal ganglia, but no astrocytic reaction. In addition, c-rel(-/-) mice showed age-dependent deficits in locomotor and total activity and various gait-related deficits during a catwalk analysis that were reminiscent of bradykinesia and muscle rigidity. Both locomotor and gait-related deficits recovered in c-rel(-/-) mice treated with l-3,4-dihydroxyphenylalanine. These data suggest that c-Rel may act as a regulator of the substantia nigra pars compacta resilience to ageing and that aged c-rel(-/-) mice may be a suitable model of Parkinson's disease.


Assuntos
Envelhecimento/genética , Neurônios Dopaminérgicos/patologia , NF-kappa B/genética , Transtornos Parkinsonianos/genética , Substância Negra/patologia , Envelhecimento/metabolismo , Animais , Contagem de Células , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Ácido Homovanílico/metabolismo , Camundongos , Camundongos Knockout , Atividade Motora/genética , NF-kappa B/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo
3.
PLoS One ; 7(2): e31451, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22347480

RESUMO

BACKGROUND: The functioning of the nervous system depends upon the specificity of its synaptic contacts. The mechanisms triggering the expression of the appropriate receptors on postsynaptic membrane and the role of the presynaptic partner in the differentiation of postsynaptic structures are little known. METHODS AND FINDINGS: To address these questions we cocultured murine primary muscle cells with several glutamatergic neurons, either cortical, cerebellar or hippocampal. Immunofluorescence and electrophysiology analyses revealed that functional excitatory synaptic contacts were formed between glutamatergic neurons and muscle cells. Moreover, immunoprecipitation and immunofluorescence experiments showed that typical anchoring proteins of central excitatory synapses coimmunoprecipitate and colocalize with rapsyn, the acetylcholine receptor anchoring protein at the neuromuscular junction. CONCLUSIONS: These results support an important role of the presynaptic partner in the induction and differentiation of the postsynaptic structures.


Assuntos
Diferenciação Celular , Fibras Musculares Esqueléticas/citologia , Proteínas Musculares/fisiologia , Neurônios/citologia , Sinapses/fisiologia , Animais , Técnicas de Cocultura , Ácido Glutâmico , Camundongos , Junção Neuromuscular , Neurônios/ultraestrutura , Densidade Pós-Sináptica/química , Densidade Pós-Sináptica/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Receptores Colinérgicos , Receptores de Glutamato , Sinapses/ultraestrutura
4.
J Mol Neurosci ; 45(1): 22-31, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21181298

RESUMO

The relationship between ß-amyloid (Aß) and tau is not fully understood, though it is proposed that in the pathogenesis of Alzheimer's disease (AD) Aß accumulation precedes and promotes tau hyperphosphorylation via activation of glycogen synthase kinase-3beta (GSK-3ß). Both events contribute to learning and memory impairments. Modulation of γ-secretase activity has proved to reduce the Aß burden and cognitive deficits in mouse models of AD, but its ability in reducing the tau pathology remains elusive. Chronic treatments with two γ-secretase modulators, ibuprofen and CHF5074, disclosed higher activity of CHF5074 in ameliorating brain plaque deposition and spatial memory deficits in transgenic mice expressing human amyloid precursor protein (hAPP) with Swedish and London mutations (APP(SL) mice). The aim of our study was to investigate in APP(SL) mice the effect of the two compounds on the accumulation of native hyperphosphorylated tau as well as on the GSK-3ß signaling. CHF5074 was more effective than ibuprofen in reducing tau pathology, though both compounds decreased the GSK-3ß level and increased the GSK-3ß inhibitory phosphorylation near to the non-Tg values. The inhibition of GSK-3ß appeared to be secondary to the reduction of Aß generation as, differently from LiCl, CHF5074 reproduced its effect in hAPP-overexpressing neuroglioma cells, but not in wild-type primary neurons. Our data show that the novel γ-secretase modulator CHF5074 can fully reverse ß-amyloid-associated tau pathology, thus representing a promising therapeutic agent for AD.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ciclopropanos/farmacologia , Flurbiprofeno/análogos & derivados , Neurônios/efeitos dos fármacos , Proteínas tau/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Células Cultivadas , Inibidores de Ciclo-Oxigenase/farmacologia , Dieta , Modelos Animais de Doenças , Flurbiprofeno/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Ibuprofeno/farmacologia , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas tau/genética
5.
J Neuropathol Exp Neurol ; 68(10): 1103-15, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19918122

RESUMO

After denervation of adult rat abdominal muscles, the postsynaptic apparatus of neuromuscular junctions (NMJs) retains its original architecture and clustering of acetylcholine receptors (AChRs). When descending fibers of the spinal cord are surgically diverted to this muscle by a nerve grafting procedure, supraspinal glutamatergic neurons can innervate muscle fibers and restore motor function; the newly formed NMJs switch from a cholinergic to a glutamatergic-type synapse. We show here that regenerating nerve endings contact the fibers in an area occupied by cholinergic endplates. These NMJs are morphologically indistinguishable from those in controls, but they differ in the subunit composition of AChRs. Moreover, by immunofluorescence and immunoelectron microscopy, new NMJs express glutamatergic synapse markers. The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1 partially colocalizes with AChRs, and vesicular glutamate transporter 2 is localized in the presynaptic compartment. Immunoprecipitation analysis of membranes from reinnervated muscle showed that AMPA receptor subunits GluR1 and GluR2 coimmunoprecipitate with rapsyn, the AChR-anchoring protein at the NMJ. Taken together, these results indicate that cholinergic endplates can be targeted by new glutamatergic projections and that the clustering of AMPA receptors occurs there.


Assuntos
Ácido Glutâmico/metabolismo , Placa Motora/fisiologia , Músculo Esquelético/fisiologia , Regeneração Nervosa/fisiologia , Junção Neuromuscular/fisiologia , Receptores Colinérgicos/metabolismo , Animais , Imunofluorescência , Imunoprecipitação , Masculino , Microscopia Imunoeletrônica , Placa Motora/ultraestrutura , Proteínas Musculares/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/ultraestrutura , Junção Neuromuscular/ultraestrutura , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
6.
Int Rev Neurobiol ; 85: 351-62, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19607980

RESUMO

Nuclear factor-kappaB (NF-kappaB) is a dimeric transcription factor composed of five members, p50, RelA/p65, c-Rel, RelB, and p52 that can diversely combine to form the active transcriptional dimer. NF-kappaB controls the expression of genes that regulate a broad range of biological processes in the central nervous system such as synaptic plasticity, neurogenesis, and differentiation. Although NF-kappaB is essential for neuron survival and its activation may protect neurons against oxidative-stresses or ischemia-induced neurodegeneration, NF-kappaB activation can contribute to inflammatory reactions and apoptotic cell death after brain injury and stroke. It was proposed that the death or survival of neurons might depend on the cell type and the timing of NF-kappaB activation. We here discuss recent evidence suggesting that within the same neuronal cell, activation of diverse NF-kappaB dimers drives opposite effects on neuronal survival. Unbalanced activation of NF-kappaB p50/RelA dimer over c-Rel-containing complexes contributes to cell death secondary to the ischemic insult. While p50/RelA acts as transcriptional inducer of Bcl-2 family proapoptotic Bim and Noxa genes, c-Rel dimers specifically promote transcription of antiapototic Bcl-xL gene. Changes in the nuclear content of c-Rel dimers strongly affect the threshold of neuron vulnerability to ischemic insult and agents, likewise leptin, activating a NF-kappaB/c-Rel-dependent transcription elicit neuroprotection in animal models of brain ischemia.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Sobrevivência Celular/fisiologia , NF-kappa B/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Morte Celular/fisiologia , Dimerização , NF-kappa B/biossíntese , Neurônios/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...