Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(50): 59025-59036, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38084630

RESUMO

The production of freestanding membranes using two-dimensional (2D) materials often involves techniques such as van der Waals (vdW) epitaxy, quasi-vdW epitaxy, and remote epitaxy. However, a challenge arises when attempting to manufacture freestanding GaN by using these 2D-material-assisted growth techniques. The issue lies in securing stability, as high-temperature growth conditions under metal-organic chemical vapor deposition (MOCVD) can cause damage to the 2D materials due to GaN decomposition of the substrate. Even when GaN is successfully grown using this method, damage to the 2D material leads to direct bonding with the substrate, making the exfoliation of the grown GaN nearly impossible. This study introduces an approach for GaN growth and exfoliation on 2D material/GaN templates. First, graphene and hexagonal boron nitride (h-BN) were transferred onto the GaN template, creating stable conditions under high temperatures and various gases in MOCVD. GaN was grown in a two-step process at 750 and 900 °C, ensuring exfoliation in cases where the 2D materials remained intact. Essentially, while it is challenging to grow GaN on 2D material/GaN using only MOCVD, this study demonstrates that with effective protection of the 2D material, the grown GaN can endure high temperatures and still be exfoliated. Furthermore, these results support that vdW epitaxy and remote epitaxy principle are not only possible with specific equipment but also applicable generally.

2.
ACS Nano ; 17(12): 11739-11748, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37279113

RESUMO

Remote epitaxy is a promising technology that has recently attracted considerable attention, which enables the growth of thin films that copy the crystallographic characteristics of the substrate through two-dimensional material interlayers. The grown films can be exfoliated to form freestanding membranes, although it is often challenging to apply this technique if the substrate materials are prone to damage under harsh epitaxy conditions. For example, remote epitaxy of GaN thin films on graphene/GaN templates has not been achieved by a standard metal-organic chemical vapor deposition (MOCVD) method due to such damages. Here, we report GaN remote heteroepitaxy on graphene/AlN templates by MOCVD and investigate the influence of surface pits in AlN on the growth and exfoliation of GaN thin films. We first show the thermal stability of graphene before GaN growth, based on which two-step growth of GaN on graphene/AlN is developed. The GaN samples are successfully exfoliated after the first step of the growth at 750 °C, whereas the exfoliation failed after the second step at 1050 °C. In-depth analysis confirms that the pits in AlN templates lead to the degradation of graphene near the area and thus the alteration of growth modes and the failure of exfoliation. These results exemplify the importance of chemical and topographic properties of growth templates for successful remote epitaxy. It is one of the key factors for III-nitride-based remote epitaxy, and these results are expected to be of great help in realizing complete remote epitaxy using only MOCVD.

3.
Nanomaterials (Basel) ; 11(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946918

RESUMO

Quantum dot (QD)-based luminescent down-shifting (LDS) layers were deposited on Cu2ZnSn(S,Se)4 (CZTSSe) solar cells via the drop-casting method. The LDS layers can easily widen the narrow absorption wavelength regions of single-junction solar cells and enable improvement of the short-circuit current. The optical properties of LDS layers deposited on glass and containing different QD contents were analyzed based on their transmittance, reflectance, and absorbance. The absorber films to be used in the CZTSSe solar cells were determined by X-ray diffraction measurements and Raman spectroscopy to determine their crystal structures and secondary phases, respectively. The completed CZTSSe solar cells with LDS layers showed increased ultraviolet responses of up to 25% because of wavelength conversion by the QDs. In addition, the impact of the capping layer, which was formed to protect the QDs from oxygen and moisture, on the solar cell performance was analyzed. Thus, a maximal conversion efficiency of 7.3% was achieved with the 1.0 mL QD condition; furthermore, to the best of our knowledge, this is the first time that LDS layers have been experimentally demonstrated for CZTSSe solar cells.

4.
Nanoscale ; 11(18): 8706-8714, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31017154

RESUMO

Atomically thin transition metal dichalcogenides (TMDs) have recently attracted great attention since the unique and fascinating physical properties have been found in various TMDs, implying potential applications in next-generation devices. The progress towards developing new functional and high-performance devices based on TMDs, however, is limited by the difficulty in producing large-area monolayer TMDs due to a lack of knowledge of the growth processes of monolayer TMDs. In this work, we have investigated the growth processes of monolayer WS2 crystals using a thermal chemical vapor deposition method, in which the growth conditions were adjusted in a systematic manner. It was found that, after forming WO3-WS2 core-shell nanoparticles as nucleation sites on a substrate, the growth of three-dimensional WS2 islands proceeds by ripening and crystallization processes. Lateral growth of monolayer WS2 crystals subsequently occurs by the surface diffusion process of adatoms toward the step edge of the three-dimensional WS2 islands. Our results provide understanding of the growth processes of monolayer WS2 by using chemical vapor deposition methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA