Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Biol Biotechnol ; 9(1): 2, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177129

RESUMO

Maleidrides are a family of structurally related fungal natural products, many of which possess diverse, potent bioactivities. Previous identification of several maleidride biosynthetic gene clusters, and subsequent experimental work, has determined the 'core' set of genes required to construct the characteristic medium-sized alicyclic ring with maleic anhydride moieties. Through genome mining, this work has used these core genes to discover ten entirely novel putative maleidride biosynthetic gene clusters, amongst both publicly available genomes, and encoded within the genome of the previously un-sequenced epiheveadride producer Wicklowia aquatica CBS 125634. We have undertaken phylogenetic analyses and comparative bioinformatics on all known and putative maleidride biosynthetic gene clusters to gain further insights regarding these unique biosynthetic pathways.

2.
J Nat Prod ; 85(3): 572-580, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35170975

RESUMO

Three new polyketide-derived natural products, cladobotric acids G-I (1-3), and six known metabolites (4, 5, 8-11) were isolated from fermentation of the fungus Cladobotryum sp. grown on rice. Their structures were elucidated by extensive spectroscopic methods. Two metabolites, cladobotric acid A (4) and pyrenulic acid A (10), were converted to a series of new products (12-20) by semisynthesis. The antibacterial activities of all these compounds were investigated against the Gram-positive pathogen Staphylococcus aureus including methicillin-susceptible (MSSA), methicillin-resistant and vancomycin-intermediate (MRSA/VISA), and heterogeneous vancomycin-intermediate (hVISA) strains. Results of these antibacterial assays revealed structural features of the unsaturated decalins important for biological activity.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Vancomicina
3.
Chembiochem ; 22(21): 3027-3036, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34190382

RESUMO

Azaphilones are a family of polyketide-based fungal natural products that exhibit interesting and useful bioactivities. This minireview explores the literature on various characterised azaphilone biosynthetic pathways, which allows for a proposed consensus scheme for the production of the core azaphilone structure, as well as identifying early diversification steps during azaphilone biosynthesis. A consensus understanding of the core enzymatic steps towards a particular family of fungal natural products can aid in genome-mining experiments. Genome mining for novel fungal natural products is a powerful technique for both exploring chemical space and providing new insights into fungal natural product pathways.


Assuntos
Produtos Biológicos/metabolismo , Monascus/química , Pigmentos Biológicos/biossíntese , Benzopiranos/química , Produtos Biológicos/química , Estrutura Molecular , Monascus/metabolismo , Pigmentos Biológicos/química
4.
Front Fungal Biol ; 2: 632542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744117

RESUMO

The use of filamentous fungi as cellular factories, where natural product pathways can be refactored and expressed in a host strain, continues to aid the field of natural product discovery. Much work has been done to develop host strains which are genetically tractable, and for which there are multiple selectable markers and controllable expression systems. To fully exploit these strains, it is beneficial to understand their natural metabolic capabilities, as such knowledge can rule out host metabolites from analysis of transgenic lines and highlight any potential interplay between endogenous and exogenous pathways. Additionally, once identified, the deletion of secondary metabolite pathways from host strains can simplify the detection and purification of heterologous compounds. To this end, secondary metabolite production in Aspergillus oryzae strain NSAR1 has been investigated via the deletion of the newly discovered negative regulator of secondary metabolism, mcrA (multicluster regulator A). In all ascomycetes previously studied mcrA deletion led to an increase in secondary metabolite production. Surprisingly, the only detectable phenotypic change in NSAR1 was a doubling in the yields of kojic acid, with no novel secondary metabolites produced. This supports the previous claim that secondary metabolite production has been repressed in A. oryzae and demonstrates that such repression is not McrA-mediated. Strain NSAR1 was then modified by employing CRISPR-Cas9 technology to disrupt the production of kojic acid, generating the novel strain NSARΔK, which combines the various beneficial traits of NSAR1 with a uniquely clean secondary metabolite background.

5.
Chem Sci ; 11(42): 11570-11578, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34094403

RESUMO

Maleidrides are a class of bioactive secondary metabolites unique to filamentous fungi, which contain one or more maleic anhydrides fused to a 7-, 8- or 9- membered carbocycle (named heptadrides, octadrides and nonadrides respectively). Herein structural and biosynthetic studies on the antifungal octadride, zopfiellin, and nonadrides scytalidin, deoxyscytalidin and castaneiolide are described. A combination of genome sequencing, bioinformatic analyses, gene disruptions, biotransformations, isotopic feeding studies, NMR and X-ray crystallography revealed that they share a common biosynthetic pathway, diverging only after the nonadride deoxyscytalidin. 5-Hydroxylation of deoxyscytalidin occurs prior to ring contraction in the zopfiellin pathway of Diffractella curvata. In Scytalidium album, 6-hydroxylation - confirmed as being catalysed by the α-ketoglutarate dependent oxidoreductase ScyL2 - converts deoxyscytalidin to scytalidin, in the final step in the scytalidin pathway. Feeding scytalidin to a zopfiellin PKS knockout strain led to the production of the nonadride castaneiolide and two novel ring-open maleidrides.

6.
Chem Sci ; 10(10): 2930-2939, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30996871

RESUMO

Three novel dimeric xanthones, cryptosporioptides A-C were isolated from Cryptosporiopsis sp. 8999 and their structures elucidated. Methylation of cryptosporioptide A gave a methyl ester with identical NMR data to cryptosporioptide, a compound previously reported to have been isolated from the same fungus. However, HRMS analysis revealed that cryptosporioptide is a symmetrical dimer, not a monomer as previously proposed, and the revised structure was elucidated by extensive NMR analysis. The genome of Cryptosporiopsis sp. 8999 was sequenced and the dimeric xanthone (dmx) biosynthetic gene cluster responsible for the production of the cryptosporioptides was identified. Gene disruption experiments identified a gene (dmxR5) encoding a cytochrome P450 oxygenase as being responsible for the dimerisation step late in the biosynthetic pathway. Disruption of dmxR5 led to the isolation of novel monomeric xanthones. Cryptosporioptide B and C feature an unusual ethylmalonate subunit: a hrPKS and acyl CoA carboxylase are responsible for its formation. Bioinformatic analysis of the genomes of several fungi producing related xanthones, e.g. the widely occurring ergochromes, and related metabolites allows detailed annotation of the biosynthetic genes, and a rational overall biosynthetic scheme for the production of fungal dimeric xanthones to be proposed.

7.
Chem Sci ; 10(1): 233-238, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30746079

RESUMO

Two new dihydroxy-xanthone metabolites, agnestins A and B, were isolated from Paecilomyces variotii along with a number of related benzophenones and xanthones including monodictyphenone. The structures were elucidated by NMR analyses and X-ray crystallography. The agnestin (agn) biosynthetic gene cluster was identified and targeted gene disruptions of the PKS, Baeyer-Villiger monooxygenase, and other oxido-reductase genes revealed new details of fungal xanthone biosynthesis. In particular, identification of a reductase responsible for in vivo anthraquinone to anthrol conversion confirms a previously postulated essential step in aromatic deoxygenation of anthraquinones, e.g. emodin to chrysophanol.

8.
Nat Commun ; 9(1): 3940, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258052

RESUMO

Strobilurins from fungi are the inspiration for the creation of the ß-methoxyacrylate class of agricultural fungicides. However, molecular details of the biosynthesis of strobilurins have remained cryptic. Here we report the sequence of genomes of two fungi that produce strobilurins and show that each contains a biosynthetic gene cluster, which encodes a highly reducing polyketide synthase with very unusual C-terminal hydrolase and methyltransferase domains. Expression of stpks1 in Aspergillus oryzae leads to the production of prestrobilurin A when the fermentation is supplemented with a benzoyl coenzyme A (CoA) analogue. This enables the discovery of a previously unobserved route to benzoyl CoA. Reconstruction of the gene cluster in A. oryzae leads to the formation of prestrobilurin A, and addition of the gene str9 encoding an FAD-dependent oxygenase leads to the key oxidative rearrangement responsible for the creation of the ß-methoxyacrylate toxophore. Finally, two methyltransferases are required to complete the synthesis.


Assuntos
Basidiomycota/enzimologia , Policetídeo Sintases/metabolismo , Estrobilurinas/metabolismo , Aspergillus oryzae , Basidiomycota/genética , Família Multigênica
9.
Chem Sci ; 9(17): 4109-4117, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29780540

RESUMO

The cycloaspeptides are bioactive pentapeptides produced by various filamentous fungi, which have garnered interest from the agricultural industry due to the reported insecticidal activity of the minor metabolite, cycloaspeptide E. Genome sequencing, bioinformatics and heterologous expression confirmed that the cycloaspeptide gene cluster contains a minimal 5-module nonribosomal peptide synthetase (NRPS) and a new type of trans-acting N-methyltransferase (N-MeT). Deletion of the N-MeT encoding gene and subsequent feeding studies determined that two modules of the NRPS preferentially accept and incorporate N-methylated amino acids. This discovery allowed the development of a system with unprecedented control over substrate supply and thus output, both increasing yields of specific metabolites and allowing the production of novel fluorinated analogues. Furthermore, the biosynthetic pathway to ditryptophenaline, another fungal nonribosomal peptide, was shown to be similar, in that methylated phenylalanine is accepted by the ditryptophenaline NRPS. Again, this allowed the directed biosynthesis of a fluorinated analogue, through the feeding of a mutant strain. These discoveries represent a new paradigm for the production of N-methylated cyclic peptides via the selective incorporation of N-methylated free amino acids.

10.
Chem Commun (Camb) ; 53(56): 7965-7968, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28660939

RESUMO

The biosynthesis of the herbicide cornexistin in the fungus Paecilomyces variotii was investigated by full sequencing of its genome, knockout of key genes within its biosynthetic gene cluster and isolation and identification of intermediate compounds. The general biosynthetic pathway resembles that of byssochlamic acid and other nonadrides in the early stages, but differs in requiring fewer enzymes in the key nonadride dimerisation step, and in the removal of one maleic anhydride moiety.


Assuntos
Furanos/metabolismo , Herbicidas/metabolismo , Paecilomyces/genética , Vias Biossintéticas , Hidrolases de Éster Carboxílico/genética , Proteínas Fúngicas/genética , Técnicas de Inativação de Genes , Família Multigênica , Paecilomyces/metabolismo , Policetídeo Sintases/genética , Estereoisomerismo
11.
Angew Chem Int Ed Engl ; 55(23): 6784-8, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27099957

RESUMO

Fungal maleidrides are an important family of bioactive secondary metabolites that consist of 7, 8, or 9-membered carbocycles with one or two fused maleic anhydride moieties. The biosynthesis of byssochlamic acid (a nonadride) and agnestadride A (a heptadride) was investigated through gene disruption and heterologous expression experiments. The results reveal that the precursors for cyclization are formed by an iterative highly reducing fungal polyketide synthase supported by a hydrolase, together with two citrate-processing enzymes. The enigmatic ring formation is catalyzed by two proteins with homology to ketosteroid isomerases, and assisted by two proteins with homology to phosphatidylethanolamine-binding proteins.


Assuntos
Fungos/metabolismo , Anidridos Maleicos/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Cromatografia Líquida de Alta Pressão , Ciclização , Furanos/química , Furanos/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Anidridos Maleicos/química , Espectrometria de Massas , Família Multigênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo
12.
Chem Commun (Camb) ; 51(96): 17088-91, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26452099

RESUMO

The filamentous fungus Byssochlamys fulva strain IMI 40021 produces (+)-byssochlamic acid 1, its novel dihydroanalogue 2 and four related secondary metabolites. Agnestadrides A, 17 and B, 18 constitute a novel class of seven-membered ring, maleic anhydride-containing (hence termed heptadride) natural products. The putative maleic anhydride precursor 5 for both nonadride and heptadride biosynthesis was isolated as a fermentation product for the first time and its structure confirmed by synthesis. Acid 5 undergoes facile decarboxylation to anhydride 6. The generic term maleidrides is proposed to encompass biosynthetically-related compounds containing maleic anhydride moieties fused to an alicyclic ring, varying in size and substituents.


Assuntos
Byssochlamys/metabolismo , Furanos/metabolismo , Maleatos/metabolismo , Anidridos Maleicos/metabolismo , Furanos/química , Maleatos/química , Anidridos Maleicos/química , Estrutura Molecular
13.
Chem Sci ; 6(8): 4837-4845, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142718

RESUMO

The ACE1 and RAP1 genes from the avirulence signalling gene cluster of the rice blast fungus Magnaporthe oryzae were expressed in Aspergillus oryzae and M. oryzae itself. Expression of ACE1 alone produced a polyenyl pyrone (magnaporthepyrone), which is regioselectively epoxidised and hydrolysed to give different diols, 6 and 7, in the two host organisms. Analysis of the three introns present in ACE1 determined that A. oryzae does not process intron 2 correctly, while M. oryzae processes all introns correctly in both appressoria and mycelia. Co-expression of ACE1 and RAP1 in A. oryzae produced an amide 8 which is similar to the PKS-NRPS derived backbone of the cytochalasans. Biological testing on rice leaves showed that neither the diols 6 and 7, nor amide 8 was responsible for the observed ACE1 mediated avirulence, however, gene cluster analysis suggests that the true avirulence signalling compound may be a tyrosine-derived cytochalasan compound.

14.
PLoS One ; 8(5): e63912, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23704954

RESUMO

The type of bacterial culture medium is an important consideration during design of any experimental protocol. The aim of this study was to understand the impact of medium choice on bacterial gene expression and physiology by comparing the transcriptome of Salmonella enterica SL1344 after growth in the widely used LB broth or the rationally designed MOPS minimal medium. Transcriptomics showed that after growth in MOPS minimal media, compared to LB, there was increased expression of 42 genes involved in amino acid synthesis and 23 genes coding for ABC transporters. Seven flagellar genes had decreased expression after growth in MOPS minimal medium and this correlated with a decreased motility. In both MOPS minimal medium and MEM expression of genes from SPI-2 was increased and the adhesion of S. Typhimurium to intestinal epithelial cells was higher compared to the levels after growth in LB. However, SL1344 invasion was not significantly altered by growth in either MOPs minimal media or MEM. Expression of SPI-2 was also measured using chromosomal GFP reporter fusions followed by flow cytometry which showed, for the first time, that the reduction in SPI-2 transcript after growth in different media related to a reduction in the proportion of the bacterial population expressing SPI-2. These data highlight the profound differences in the global transcriptome after in vitro growth in different media and show that choice of medium should be considered carefully during experimental design, particularly when virulence related phenotypes are being measured.


Assuntos
Meios de Cultura/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Salmonella enterica/crescimento & desenvolvimento , Salmonella enterica/genética , Transcriptoma/genética , Aminoácidos/biossíntese , Aderência Bacteriana/efeitos dos fármacos , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genes Bacterianos/genética , Ilhas Genômicas/genética , Movimento/efeitos dos fármacos , Fenótipo , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/patogenicidade , Transcriptoma/efeitos dos fármacos
15.
Adv Virus Res ; 86: 249-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23498909

RESUMO

Botrytis cinerea (gray mold) is one of the most widespread and destructive fungal diseases of horticultural crops. Propagation and dispersal is usually by asexual conidia but the sexual stage (Botryotinia fuckeliana (de Bary) Whetzel) also occurs in nature. DsRNAs, indicative of virus infection, are common in B. cinerea, but only four viruses (Botrytis virus F (BVF), Botrytis virus X (BVX), Botrytis cinerea mitovirus 1 (BcMV1), and Botrytis porri RNA virus) have been sequenced. BVF and BVX are unusual mycoviruses being ssRNA flexous rods and have been designated the type species of the genera Mycoflexivirus and Botrexvirus (family Betaflexivirdae), respectively. The reported effects of viruses on Botrytis range from negligible to severe, with Botrytis cinerea mitovirus 1 causing hypovirulence. Little is currently known about the effects of viruses on Botrytis metabolism but recent complete sequencing of the B. cinerea genome now provides an opportunity to investigate the host-pathogen interactions at the molecular level. There is interest in the possible use of mycoviruses as biological controls for Botrytis because of the common problem of fungicide resistance. Unfortunately, hyphal anastomosis is the only known mechanism of horizontal virus transmission and the large number of vegetative incompatibility groups in Botrytis is a potential constraint on the spread of an introduced virus. Although some Botrytis viruses, such as BVF and BVX, are known to have international distribution, there is a distinct lack of epidemiological data and the means of spread are unknown.


Assuntos
Botrytis/virologia , Vírus de RNA/isolamento & purificação , Botrytis/patogenicidade , Interações Hospedeiro-Parasita , Biologia Molecular/métodos , Micologia/métodos , Controle Biológico de Vetores/métodos , Doenças das Plantas/prevenção & controle , Vírus de RNA/genética , Vírus de RNA/fisiologia , RNA Viral/genética , Virologia/métodos
16.
Proc Natl Acad Sci U S A ; 109(43): 17501-6, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23045686

RESUMO

Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and ß-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.


Assuntos
Adaptação Fisiológica/genética , Agaricus/genética , Ecologia , Genoma Fúngico , Agaricus/metabolismo , Agaricus/fisiologia , Evolução Molecular , Lignina/metabolismo
17.
Appl Environ Microbiol ; 78(23): 8281-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23001670

RESUMO

A variant of Bacillus thuringiensis subsp. kurstaki containing a single, stable copy of a uniquely amplifiable DNA oligomer integrated into the genome for tracking the fate of biological agents in the environment was developed. The use of genetically tagged spores overcomes the ambiguity of discerning the test material from pre-existing environmental microflora or from previously released background material. In this study, we demonstrate the utility of the genetically "barcoded" simulant in a controlled indoor setting and in an outdoor release. In an ambient breeze tunnel test, spores deposited on tiles were reaerosolized and detected by real-time PCR at distances of 30 m from the point of deposition. Real-time PCR signals were inversely correlated with distance from the seeded tiles. An outdoor release of powdered spore simulant at Aberdeen Proving Ground, Edgewood, MD, was monitored from a distance by a light detection and ranging (LIDAR) laser. Over a 2-week period, an array of air sampling units collected samples were analyzed for the presence of viable spores and using barcode-specific real-time PCR assays. Barcoded B. thuringiensis subsp. kurstaki spores were unambiguously identified on the day of the release, and viable material was recovered in a pattern consistent with the cloud track predicted by prevailing winds and by data tracks provided by the LIDAR system. Finally, the real-time PCR assays successfully differentiated barcoded B. thuringiensis subsp. kurstaki spores from wild-type spores under field conditions.


Assuntos
Microbiologia do Ar , Bacillus thuringiensis/genética , Bacillus thuringiensis/isolamento & purificação , Técnicas Bacteriológicas/métodos , Código de Barras de DNA Taxonômico/métodos , Bacillus anthracis/isolamento & purificação , Bacillus thuringiensis/classificação , Modelos Biológicos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Esporos Bacterianos/classificação , Esporos Bacterianos/genética , Esporos Bacterianos/isolamento & purificação , Coloração e Rotulagem/métodos , Fatores de Tempo
18.
Proc Natl Acad Sci U S A ; 109(20): 7642-7, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22508998

RESUMO

A gene cluster encoding the biosynthesis of the fungal tropolone stipitatic acid was discovered in Talaromyces stipitatus (Penicillium stipitatum) and investigated by targeted gene knockout. A minimum of three genes are required to form the tropolone nucleus: tropA encodes a nonreducing polyketide synthase which releases 3-methylorcinaldehyde; tropB encodes a FAD-dependent monooxygenase which dearomatizes 3-methylorcinaldehyde via hydroxylation at C-3; and tropC encodes a non-heme Fe(II)-dependent dioxygenase which catalyzes the oxidative ring expansion to the tropolone nucleus via hydroxylation of the 3-methyl group. The tropA gene was characterized by heterologous expression in Aspergillus oryzae, whereas tropB and tropC were successfully expressed in Escherichia coli and the purified TropB and TropC proteins converted 3-methylorcinaldehyde to a tropolone in vitro. Finally, knockout of the tropD gene, encoding a cytochrome P450 monooxygenase, indicated its place as the next gene in the pathway, probably responsible for hydroxylation of the 6-methyl group. Comparison of the T. stipitatus tropolone biosynthetic cluster with other known gene clusters allows clarification of important steps during the biosynthesis of other fungal compounds including the xenovulenes, citrinin, sepedonin, sclerotiorin, and asperfuranone.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Vias Biossintéticas/fisiologia , Família Multigênica/genética , Tropolona/metabolismo , Aspergillus oryzae , Vias Biossintéticas/genética , Cromatografia Líquida , Biologia Computacional , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Escherichia coli , Técnicas de Inativação de Genes , Espectrometria de Massas , Família Multigênica/fisiologia , Oxigenases/genética , Oxigenases/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Transformação Genética
19.
J Am Chem Soc ; 133(41): 16635-41, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21899331

RESUMO

The mechanism of programming of iterative highly reducing polyketide synthases remains one of the key unsolved problems of secondary metabolism. We conducted rational domain swaps between the polyketide synthases encoding the biosynthesis of the closely related compounds tenellin and desmethylbassianin. Expression of the hybrid synthetases in Aspergillus oryzae led to the production of reprogrammed compounds in which the changes to the methylation pattern and chain length could be mapped to the domain swaps. These experiments reveal for the first time the origin of programming in these systems. Domain swaps combined with coexpression of two cytochrome P450 encoding genes from the tenellin biosynthetic gene cluster led to the resurrection of the extinct metabolite bassianin.


Assuntos
Aspergillus oryzae/enzimologia , Policetídeo Sintases/metabolismo , Modelos Moleculares , Oxirredução , Policetídeo Sintases/química , Piridonas/química , Piridonas/metabolismo
20.
J Am Chem Soc ; 133(28): 10990-8, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21675761

RESUMO

The biosynthesis of the fungal metabolite tenellin from Beauveria bassiana CBS110.25 was investigated in the presence of the epigenetic modifiers 5-azacytidine and suberoyl bis-hydroxamic acid and under conditions where individual genes from the tenellin biosynthetic gene cluster were silenced. Numerous new compounds were synthesized, indicating that the normal predominant biosynthesis of tenellin is just one outcome out of a diverse array of possible products. The structures of the products reveal key clues about the programming selectivities of the tenellin polyketide synthase.


Assuntos
Beauveria/enzimologia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Beauveria/genética , Beauveria/metabolismo , Inativação Gênica , Modelos Moleculares , Conformação Molecular , Oxirredução , Policetídeo Sintases/deficiência , Piridonas/química , Piridonas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...