Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Pathol ; 262(4): 480-494, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38300122

RESUMO

Phyllodes tumours (PTs) are rare fibroepithelial lesions of the breast that are classified as benign, borderline, or malignant. As little is known about the molecular underpinnings of PTs, current diagnosis relies on histological examination. However, accurate classification is often difficult, particularly for distinguishing borderline from malignant PTs. Furthermore, PTs can be misdiagnosed as other tumour types with shared histological features, such as fibroadenoma and metaplastic breast cancers. As DNA methylation is a recognised hallmark of many cancers, we hypothesised that DNA methylation could provide novel biomarkers for diagnosis and tumour stratification in PTs, whilst also allowing insight into the molecular aetiology of this otherwise understudied tumour. We generated whole-genome methylation data using the Illumina EPIC microarray in a novel PT cohort (n = 33) and curated methylation microarray data from published datasets including PTs and other potentially histopathologically similar tumours (total n = 817 samples). Analyses revealed that PTs have a unique methylome compared to normal breast tissue and to potentially histopathologically similar tumours (metaplastic breast cancer, fibroadenoma and sarcomas), with PT-specific methylation changes enriched in gene sets involved in KRAS signalling and epithelial-mesenchymal transition. Next, we identified 53 differentially methylated regions (DMRs) (false discovery rate < 0.05) that specifically delineated malignant from non-malignant PTs. The top DMR in both discovery and validation cohorts was hypermethylation at the HSD17B8 CpG island promoter. Matched PT single-cell expression data showed that HSD17B8 had minimal expression in fibroblast (putative tumour) cells. Finally, we created a methylation classifier to distinguish PTs from metaplastic breast cancer samples, where we revealed a likely misdiagnosis for two TCGA metaplastic breast cancer samples. In conclusion, DNA methylation alterations are associated with PT histopathology and hold the potential to improve our understanding of PT molecular aetiology, diagnostics, and risk stratification. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama , Fibroadenoma , Tumor Filoide , Humanos , Feminino , Tumor Filoide/diagnóstico , Tumor Filoide/genética , Tumor Filoide/patologia , Metilação de DNA , Fibroadenoma/diagnóstico , Fibroadenoma/genética , Fibroadenoma/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Mama/patologia
2.
Cytotherapy ; 26(4): 325-333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38349311

RESUMO

BACKGROUND AIMS: Several anti-mesothelin (MSLN) chimeric antigen receptor (CAR) T cells are in phase 1/2 clinical trials to treat solid-organ malignancies. The effect of MSLN antigen density on MSLN CAR cytotoxicity against tumor cells has not been examined previously, nor are there data regarding the effect of agents that increase MSLN antigen density on anti-MSLN CAR T cell efficacy. METHODS: MSLN antigen density was measured on a panel of pancreatic cancer and mesothelioma cell lines by flow cytometry. In parallel, the cytotoxicity and specificity of two anti-MSLN CAR T cells (m912 and SS1) were compared against these cell lines using a real-time impedance-based assay. The effect of two MSLN 'sheddase' inhibitors (lanabecestat and TMI-1) that increase MSLN surface expression was also tested in combination with CAR T cells. RESULTS: SS1 CAR T cells were more cytotoxic compared with m912 CAR T cells against cell lines that expressed fewer than ∼170 000 MSLN molecules/cell. A comparison of the m912 and amatuximab (humanized SS1) antibodies identified that amatuximab could detect and bind to lower levels of MSLN on pancreatic cancer and mesothelioma cell lines, suggesting that superior antibody/scFv affinity was the reason for the SS1 CAR's superior cytotoxicity. The cytotoxicity of m912 CAR T cells was improved in the presence of sheddase inhibitors, which increased MSLN antigen density. CONCLUSIONS: These data highlight the value of assessing CAR constructs against a panel of cells expressing varying degrees of target tumor antigen as occurs in human tumors. Furthermore, the problem of low antigen density may be overcome by concomitant administration of drugs that inhibit enzymatic shedding of MSLN.


Assuntos
Mesotelioma , Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Humanos , Linhagem Celular Tumoral , Imunoterapia Adotiva , Mesotelina , Mesotelioma/terapia , Mesotelioma/patologia , Neoplasias Pancreáticas/terapia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo
3.
Cancer Cell Int ; 23(1): 327, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105188

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T-cells have revolutionized the treatment of CD19- and B-cell maturation antigen-positive haematological malignancies. However, the effect of a CAR construct on the function of T-cells stimulated via their endogenous T-cell receptors (TCRs) has yet to be comprehensively investigated. METHODS: Experiments were performed to systematically assess TCR signalling and function in CAR T-cells using anti-mesothelin human CAR T-cells as a model system. CAR T-cells expressing the CD28 or 4-1BB costimulatory endodomains were manufactured and compared to both untransduced T-cells and CAR T-cells with a non-functional endodomain. These cell products were treated with staphylococcal enterotoxin B to stimulate the TCR, and in vitro functional assays were performed by flow cytometry. RESULTS: Increased proliferation, CD69 expression and IFNγ production were identified in CD8+ 4-1BBζ CAR T-cells compared to control untransduced CD8+ T-cells. These functional differences were associated with higher levels of phosphorylated ZAP70 after stimulation. In addition, these functional differences were associated with a differing immunophenotype, with a more than two-fold increase in central memory cells in CD8+ 4-1BBζ CAR T-cell products. CONCLUSION: Our data indicate that the 4-1BBζ CAR enhances CD8+ TCR-mediated function. This could be beneficial if the TCR targets epitopes on malignant tissues or infectious agents, but detrimental if the TCR targets autoantigens.

4.
Br J Cancer ; 129(3): 475-485, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365284

RESUMO

PURPOSE: To determine the safety and efficacy of PARP plus PD-L1 inhibition (olaparib + durvalumab, O + D) in patients with advanced solid, predominantly rare cancers harbouring homologous recombination repair (HRR) defects. PATIENTS AND METHODS: In total, 48 patients were treated with O + D, 16 with BRCA1/2 alterations (group 1) and 32 with other select HRR alterations (group 2). Overall, 32 (66%) patients had rare or less common cancers. The primary objective of this single-arm Phase II trial was a progression-free survival rate at 6 months (PFS6). Post hoc exploratory analyses were conducted on archival tumour tissue and serial bloods. RESULTS: The PFS6 rate was 35% and 38% with durable objective tumour responses (OTR) in 3(19%) and 3(9%) in groups 1 and 2, respectively. Rare cancers achieving an OTR included cholangiocarcinoma, perivascular epithelioid cell (PEComa), neuroendocrine, gallbladder and endometrial cancer. O + D was safe, with five serious adverse events related to the study drug(s) in 3 (6%) patients. A higher proportion of CD38 high B cells in the blood and higher CD40 expression in tumour was prognostic of survival. CONCLUSIONS: O + D demonstrated no new toxicity concerns and yielded a clinically meaningful PFS6 rate and durable OTRs across several cancers with HRR defects, including rare cancers.


Assuntos
Proteína BRCA1 , Neoplasias do Endométrio , Feminino , Humanos , Proteína BRCA1/genética , Reparo de DNA por Recombinação/genética , Proteína BRCA2/genética , Ftalazinas/efeitos adversos
5.
Cell Rep Methods ; 2(8): 100275, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36046620

RESUMO

In living systems, a complex network of protein-protein interactions (PPIs) underlies most biochemical events. The human protein-protein interactome has been surveyed using yeast two-hybrid (Y2H)- and mass spectrometry (MS)-based approaches such as affinity purification coupled to MS (AP-MS). Despite decades of systematic investigations and collaborative multi-disciplinary efforts, there is no "gold standard" for documenting PPIs. A surprisingly large fraction of the human interactome remains uncharted, which we refer to as the "dark interactome." In this review, we highlight the complexity of the human interactome and discuss the current status of the human reference interactome maps. We discuss why a large proportion of the human interactome has remained refractory to traditional approaches. We propose an experimental model that can enable the identification of the dark interactome in a cell-type-specific manner. We also propose a framework to implement when embarking on studies designed to rigorously identify and characterize protein interactions.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas , Humanos , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Cromatografia de Afinidade/métodos , Saccharomyces cerevisiae/metabolismo
6.
Intern Med J ; 52(8): 1313-1321, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35973959

RESUMO

Gene therapy has been promising paradigm-shifting advances in medical science for over two decades. Broadly, it is defined as a human therapy in which an existing defective gene function is added to, replaced, edited or disrupted to achieve a clinical benefit, up to and including a potential lifelong cure. Although originally set out to treat monogenic disorders, gene therapy has since been utilised to treat neoplasia, cardiovascular and neurodegenerative diseases, as well as infections. The realisation of this therapy has been dependent on the achievement of fundamental milestones in medicine, from determining the human genome sequence to identifying effective vehicles for the gene of interest, ultimately facilitating gene delivery in humans. In this review, six approved gene and cell therapies available in Australia are described. Their efficacy, adverse effects, limitations and eligibility are discussed, as well as an overview of cost and future directions.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Austrália , Terapia Genética , Humanos
7.
Exp Eye Res ; 219: 109070, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35413282

RESUMO

Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) principally contributes to the pathogenesis of fibrotic cataract. Sprouty (Spry) and Spred proteins are receptor tyrosine kinase (RTK) antagonists that can regulate RTK-mediated signaling pathways, such as the MAPK/ERK1/2-signaling pathway. The present study examines the ability of Spry and Spred to inhibit TGFß-induced EMT in LECs. LECs explanted from postnatal-day-21 Wistar rats were transduced with adenoviral vectors coding for Spry1, Spry2 or Spred2, and subsequently treated with or without TGFß2. Immunofluorescent labeling of explants for the epithelial membrane marker ß-catenin, and the mesenchymal marker alpha-smooth muscle actin (α-sma), were used to characterize the progression of EMT. Western blotting was used to quantify levels of α-sma and ERK1/2-signaling. Overexpression of Spry or Spred in LECs was sufficient to suppress EMT in response to TGFß, including a block to cell elongation, ß-catenin delocalization and α-sma accumulation. Spry and Spred were also shown to significantly block ERK1/2 phosphorylation for up to 18 h of TGFß treatment but did not impair the earlier activation of ERK1/2 at 20 min. These findings suggest that Spry and Spred may not directly impact ERK1/2-signaling activated by the serine/threonine kinase TGFß receptor, but may selectively target later ERK1/2-signaling driven by downstream RTK-mediated signaling. Taken together, our data establish Spry and Spred antagonists as potent negative regulators of TGFß-induced EMT that can regulate ERK1/2-signaling in a temporal manner. A greater understanding of how Spry and Spred regulate the complex signaling interactions that underlie TGFß-induced EMT will be essential to facilitate the development of novel therapeutics for different pathologies driven by EMT, including fibrotic forms of cataract.


Assuntos
Catarata , Cristalino , Animais , Catarata/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Cristalino/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , beta Catenina/metabolismo
8.
Int J Cancer ; 151(1): 7-19, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35113472

RESUMO

Normal protein-protein interactions (normPPIs) occur with high fidelity to regulate almost every physiological process. In cancer, this highly organised and precisely regulated network is disrupted, hijacked or reprogrammed resulting in oncogenic protein-protein interactions (oncoPPIs). OncoPPIs, which can result from genomic alterations, are a hallmark of many types of cancers. Recent technological advances in the field of mass spectrometry (MS)-based interactomics, structural biology and drug discovery have prompted scientists to identify and characterise oncoPPIs. Disruption of oncoPPI interfaces has become a major focus of drug discovery programs and has resulted in the use of PPI-specific drugs clinically. However, due to several technical hurdles, studies to build a reference oncoPPI map for various cancer types have not been undertaken. Therefore, there is an urgent need for experimental workflows to overcome the existing challenges in studying oncoPPIs in various cancers and to build comprehensive reference maps. Here, we discuss the important hurdles for characterising oncoPPIs and propose a three-phase multidisciplinary workflow to identify and characterise oncoPPIs. Systematic identification of cancer-type-specific oncogenic interactions will spur new opportunities for PPI-focused drug discovery projects and precision medicine.


Assuntos
Neoplasias , Medicina de Precisão , Carcinogênese/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Oncogenes , Mapeamento de Interação de Proteínas
9.
FEBS J ; 289(1): 199-214, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34231305

RESUMO

The combination of four proteins and their paralogues including MBD2/3, GATAD2A/B, CDK2AP1 and CHD3/4/5, which we refer to as the MGCC module, form the chromatin remodelling module of the nucleosome remodelling and deacetylase (NuRD) complex. To date, mechanisms by which the MGCC module acquires paralogue-specific function and specificity have not been addressed. Understanding the protein-protein interaction (PPI) network of the MGCC subunits is essential for defining underlying mechanisms of gene regulation. Therefore, using pulldown followed by mass spectrometry analysis (PD-MS), we report a proteome-wide interaction network of the MGCC module in a paralogue-specific manner. Our data also demonstrate that the disordered C-terminal region of CHD3/4/5 is a gateway to incorporate remodelling activity into both ChAHP (CHD4, ADNP, HP1γ) and NuRD complexes in a mutually exclusive manner. We define a short aggregation-prone region (APR) within the C-terminal segment of GATAD2B that is essential for the interaction of CHD4 and CDK2AP1 with the NuRD complex. Finally, we also report an association of CDK2AP1 with the nuclear receptor co-repressor (NCOR) complex. Overall, this study provides insight into the possible mechanisms through which the MGCC module can achieve specificity and diverse biological functions.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Mapas de Interação de Proteínas/genética , Proteoma/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/ultraestrutura , Complexos Multiproteicos/genética , Nucleossomos/genética , Nucleossomos/ultraestrutura , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética
10.
Cells ; 12(1)2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36611813

RESUMO

L-proline (Pro) has previously been shown to support normal development of mouse embryos. Recently we have shown that Pro improves subsequent embryo development when added to fertilisation medium during in vitro fertilisation of mouse oocytes. The mechanisms by which Pro improves embryo development are still being elucidated but likely involve signalling pathways that have been observed in Pro-mediated differentiation of mouse embryonic stem cells. In this study, we show that B0AT1, a neutral amino acid transporter that accepts Pro, is expressed in mouse preimplantation embryos, along with the accessory protein ACE2. B0AT1 knockout (Slc6a19-/-) mice have decreased fertility, in terms of litter size and preimplantation embryo development in vitro. In embryos from wild-type (WT) mice, excess unlabelled Pro inhibited radiolabelled Pro uptake in oocytes and 4-8-cell stage embryos. Radiolabelled Pro uptake was reduced in 4-8-cell stage embryos, but not in oocytes, from Slc6a19-/- mice compared to those from WT mice. Other B0AT1 substrates, such as alanine and leucine, reduced uptake of Pro in WT but not in B0AT1 knockout embryos. Addition of Pro to culture medium improved embryo development. In WT embryos, Pro increased development to the cavitation stage (on day 4); whereas in B0AT1 knockout embryos Pro improved development to the 5-8-cell (day 3) and blastocyst stages (day 6) but not at cavitation (day 4), suggesting B0AT1 is the main contributor to Pro uptake on day 4 of development. Our results highlight transporter redundancy in the preimplantation embryo.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Prolina , Gravidez , Feminino , Animais , Camundongos , Prolina/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Blastocisto/metabolismo , Diferenciação Celular , Desenvolvimento Embrionário
11.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830054

RESUMO

Chimeric RNAs are often associated with chromosomal rearrangements in cancer. In addition, they are also widely detected in normal tissues, contributing to transcriptomic complexity. Despite their prevalence, little is known about the characteristics and functions of chimeric RNAs. Here, we examine the genetic structure and biological roles of CLEC12A-MIR223HG, a novel chimeric transcript produced by the fusion of the cell surface receptor CLEC12A and the miRNA-223 host gene (MIR223HG), first identified in chronic myeloid leukemia (CML) patients. Surprisingly, we observed that CLEC12A-MIR223HG is not just expressed in CML, but also in a variety of normal tissues and cell lines. CLEC12A-MIR223HG expression is elevated in pro-monocytic cells resistant to chemotherapy and during monocyte-to-macrophage differentiation. We observed that CLEC12A-MIR223HG is a product of trans-splicing rather than a chromosomal rearrangement and that transcriptional activation of CLEC12A with the CRISPR/Cas9 Synergistic Activation Mediator (SAM) system increases CLEC12A-MIR223HG expression. CLEC12A-MIR223HG translates into a chimeric protein, which largely resembles CLEC12A but harbours an altered C-type lectin domain altering key disulphide bonds. These alterations result in differences in post-translational modifications, cellular localization, and protein-protein interactions. Taken together, our observations support a possible involvement of CLEC12A-MIR223HG in the regulation of CLEC12A function. Our workflow also serves as a template to study other uncharacterized chimeric RNAs.


Assuntos
Fusão Gênica , Lectinas Tipo C/genética , Leucemia Mieloide/genética , MicroRNAs/genética , Proteínas Mutantes Quiméricas/genética , Receptores Mitogênicos/genética , Trans-Splicing , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Citarabina/farmacologia , Humanos , Lectinas Tipo C/metabolismo , Leucemia Mieloide/metabolismo , MicroRNAs/metabolismo , Proteínas Mutantes Quiméricas/metabolismo , Receptores Mitogênicos/metabolismo , Ativação Transcricional
12.
Cell Mol Life Sci ; 78(23): 7519-7536, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34657170

RESUMO

CCCTC-binding factor (CTCF) plays fundamental roles in transcriptional regulation and chromatin architecture maintenance. CTCF is also a tumour suppressor frequently mutated in cancer, however, the structural and functional impact of mutations have not been examined. We performed molecular and structural characterisation of five cancer-specific CTCF missense zinc finger (ZF) mutations occurring within key intra- and inter-ZF residues. Functional characterisation of CTCF ZF mutations revealed a complete (L309P, R339W, R377H) or intermediate (R339Q) abrogation as well as an enhancement (G420D) of the anti-proliferative effects of CTCF. DNA binding at select sites was disrupted and transcriptional regulatory activities abrogated. Molecular docking and molecular dynamics confirmed that mutations in residues specifically contacting DNA bases or backbone exhibited loss of DNA binding. However, R339Q and G420D were stabilised by the formation of new primary DNA bonds, contributing to gain-of-function. Our data confirm that a spectrum of loss-, change- and gain-of-function impacts on CTCF zinc fingers are observed in cell growth regulation and gene regulatory activities. Hence, diverse cellular phenotypes of mutant CTCF are clearly explained by examining structure-function relationships.


Assuntos
Fator de Ligação a CCCTC/química , Fator de Ligação a CCCTC/metabolismo , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias/patologia , Fenótipo , Dedos de Zinco , Apoptose , Fator de Ligação a CCCTC/genética , Proliferação de Células , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Relação Estrutura-Atividade , Células Tumorais Cultivadas
13.
Nucleic Acids Res ; 49(14): 7825-7838, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34181707

RESUMO

Three decades of research have established the CCCTC-binding factor (CTCF) as a ubiquitously expressed chromatin organizing factor and master regulator of gene expression. A new role for CTCF as a regulator of alternative splicing (AS) has now emerged. CTCF has been directly and indirectly linked to the modulation of AS at the individual transcript and at the transcriptome-wide level. The emerging role of CTCF-mediated regulation of AS involves diverse mechanisms; including transcriptional elongation, DNA methylation, chromatin architecture, histone modifications, and regulation of splicing factor expression and assembly. CTCF thereby appears to not only co-ordinate gene expression regulation but contributes to the modulation of transcriptomic complexity. In this review, we highlight previous discoveries regarding the role of CTCF in AS. In addition, we summarize detailed mechanisms by which CTCF mediates AS regulation. We propose opportunities for further research designed to examine the possible fate of CTCF-mediated alternatively spliced genes and associated biological consequences. CTCF has been widely acknowledged as the 'master weaver of the genome'. Given its multiple connections, further characterization of CTCF's emerging role in splicing regulation might extend its functional repertoire towards a 'conductor of the splicing orchestra'.


Assuntos
Processamento Alternativo , Fator de Ligação a CCCTC/genética , Cromatina/genética , Metilação de DNA , Regulação da Expressão Gênica , Genoma Humano/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Modelos Genéticos , Ligação Proteica
14.
Protein Expr Purif ; 181: 105833, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33524496

RESUMO

Fibroblast activation protein alpha (FAP) is a cell-surface expressed type II glycoprotein that has a unique proteolytic activity. FAP has active soluble forms that retain the extracellular portion but lack the transmembrane domain and cytoplasmic tail. FAP expression is normally very low in adult tissue but is highly expressed by activated fibroblasts in sites of tissue remodelling. Thus, FAP is a potential biomarker and pharmacological target in liver fibrosis, atherosclerosis, cardiac fibrosis, arthritis and cancer. Understanding the biological significance of FAP by investigating protein structure, interactions and activities requires reliable methods for the production and purification of abundant pure and stable protein. We describe an improved production and purification protocol for His6-tagged recombinant soluble human FAP. A modified baculovirus expression construct was generated using the pFastBac1 vector and the gp67 secretion signal to produce abundant active soluble recombinant human FAP (residues 27-760) in insect cells. The FAP purification protocol employed ammonium sulphate precipitation, ion exchange chromatography, immobilised metal affinity chromatography and ultrafiltration. High purity was achieved, as judged by gel electrophoresis and specific activity. The purified 82 kDa FAP protein was specifically inhibited by a FAP selective inhibitor, ARI-3099, and was inhibited by zinc with an IC50 of 25 µM. Our approach could be adopted for producing the soluble portions of other type II transmembrane glycoproteins to study their structure and function.


Assuntos
Endopeptidases , Proteínas de Membrana , Animais , Endopeptidases/biossíntese , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/isolamento & purificação , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Células Sf9 , Spodoptera
15.
RNA Biol ; 18(1): 93-103, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816606

RESUMO

CTCF is a master regulator of gene transcription and chromatin organisation with occupancy at thousands of DNA target sites genome-wide. While CTCF is essential for cell survival, CTCF haploinsufficiency is associated with tumour development and hypermethylation. Increasing evidence demonstrates CTCF as a key player in several mechanisms regulating alternative splicing (AS), however, the genome-wide impact of Ctcf dosage on AS has not been investigated. We examined the effect of Ctcf haploinsufficiency on gene expression and AS in five tissues from Ctcf hemizygous (Ctcf+/-) mice. Reduced Ctcf levels caused distinct tissue-specific differences in gene expression and AS in all tissues. An increase in intron retention (IR) was observed in Ctcf+/- liver and kidney. In liver, this specifically impacted genes associated with cytoskeletal organisation, splicing and metabolism. Strikingly, most differentially retained introns were short, with a high GC content and enriched in Ctcf binding sites in their proximal upstream genomic region. This study provides new insights into the effects of CTCF haploinsufficiency on organ transcriptomes and the role of CTCF in AS regulation.


Assuntos
Processamento Alternativo , Fator de Ligação a CCCTC/genética , Regulação da Expressão Gênica , Haploinsuficiência , Íntrons , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/metabolismo , Genótipo , Camundongos , Camundongos Knockout , Modelos Biológicos , Especificidade de Órgãos , Ligação Proteica , Transcriptoma
16.
Trends Mol Med ; 27(2): 172-184, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33071047

RESUMO

As adeno-associated virus (AAV)-based gene therapies are being increasingly approved for use in humans, it is important that we understand vector-host interactions in detail. With the advances in genome-wide genetic screening tools, a clear picture of AAV-host interactions is beginning to emerge. Understanding these interactions can provide insights into the viral life cycle. Accordingly, novel strategies to circumvent the current limitations of AAV-based vectors may be explored. Here, we summarize our current understanding of the various stages in the journey of the vector from the cell surface to the nucleus and contextualize the roles of recently identified host factors.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Transdução Genética , Animais , Transporte Biológico , Rastreamento de Células , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Interações entre Hospedeiro e Microrganismos , Humanos
17.
Cancers (Basel) ; 12(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322625

RESUMO

Vast transcriptomics and epigenomics changes are characteristic of human cancers, including leukaemia. At remission, we assume that these changes normalise so that omics-profiles resemble those of healthy individuals. However, an in-depth transcriptomic and epigenomic analysis of cancer remission has not been undertaken. A striking exemplar of targeted remission induction occurs in chronic myeloid leukaemia (CML) following tyrosine kinase inhibitor (TKI) therapy. Using RNA sequencing and whole-genome bisulfite sequencing, we profiled samples from chronic-phase CML patients at diagnosis and remission and compared these to healthy donors. Remarkably, our analyses revealed that abnormal splicing distinguishes remission samples from normal controls. This phenomenon is independent of the TKI drug used and in striking contrast to the normalisation of gene expression and DNA methylation patterns. Most remarkable are the high intron retention (IR) levels that even exceed those observed in the diagnosis samples. Increased IR affects cell cycle regulators at diagnosis and splicing regulators at remission. We show that aberrant splicing in CML is associated with reduced expression of specific splicing factors, histone modifications and reduced DNA methylation. Our results provide novel insights into the changing transcriptomic and epigenomic landscapes of CML patients during remission. The conceptually unanticipated observation of widespread aberrant alternative splicing after remission induction warrants further exploration. These results have broad implications for studying CML relapse and treating minimal residual disease.

18.
Nucleic Acids Res ; 47(22): 11497-11513, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31724706

RESUMO

Intron retention (IR) is a form of alternative splicing that has long been neglected in mammalian systems although it has been studied for decades in non-mammalian species such as plants, fungi, insects and viruses. It was generally assumed that mis-splicing, leading to the retention of introns, would have no physiological consequence other than reducing gene expression by nonsense-mediated decay. Relatively recent landmark discoveries have highlighted the pivotal role that IR serves in normal and disease-related human biology. Significant technical hurdles have been overcome, thereby enabling the robust detection and quantification of IR. Still, relatively little is known about the cis- and trans-acting modulators controlling this phenomenon. The fate of an intron to be, or not to be, retained in the mature transcript is the direct result of the influence exerted by numerous intrinsic and extrinsic factors at multiple levels of regulation. These factors have altered current biological paradigms and provided unexpected insights into the transcriptional landscape. In this review, we discuss the regulators of IR and methods to identify them. Our focus is primarily on mammals, however, we broaden the scope to non-mammalian organisms in which IR has been shown to be biologically relevant.


Assuntos
Processamento Alternativo/genética , Regulação da Expressão Gênica/genética , Íntrons/genética , RNA Mensageiro/genética , Animais , Bactérias/genética , Epigênese Genética/genética , Fungos/genética , Humanos , Degradação do RNAm Mediada por Códon sem Sentido/genética , Sequências Reguladoras de Ácido Ribonucleico/genética
19.
Cell Commun Signal ; 17(1): 83, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31345230

RESUMO

BACKGROUND: Growth factors, such as EGF, activate the PI3K/Akt/mTORC1 signalling pathway, which regulates a distinct program of protein synthesis leading to cell growth. This pathway relies on mTORC1 sensing sufficient levels of intracellular amino acids, such as leucine, which are required for mTORC1 activation. However, it is currently unknown whether there is a direct link between these external growth signals and intracellular amino acid levels. In primary prostate cancer cells, intracellular leucine levels are regulated by L-type amino acid transporter 3 (LAT3/SLC43A1), and we therefore investigated whether LAT3 is regulated by growth factor signalling. METHODS: To investigate how PI3K/Akt signalling regulates leucine transport, prostate cancer cells were treated with different PI3K/Akt inhibitors, or stable knock down of LAT3 by shRNA, followed by analysis of leucine uptake, western blotting, immunofluorescent staining and proximity ligation assay. RESULTS: Inhibition of PI3K/Akt signalling significantly reduced leucine transport in LNCaP and PC-3 human prostate cancer cell lines, while growth factor addition significantly increased leucine uptake. These effects appeared to be mediated by LAT3 transport, as LAT3 knockdown blocked leucine uptake, and was not rescued by growth factor activation or further inhibited by signalling pathway inhibition. We further demonstrated that EGF significantly increased LAT3 protein levels when Akt was phosphorylated, and that Akt and LAT3 co-localised on the plasma membrane in EGF-activated LNCaP cells. These effects were likely due to stabilisation of LAT3 protein levels on the plasma membrane, with EGF treatment preventing ubiquitin-mediated LAT3 degradation. CONCLUSION: Growth factor-activated PI3K/Akt signalling pathway regulates leucine transport through LAT3 in prostate cancer cell lines. These data support a direct link between growth factor and amino acid uptake, providing a mechanism by which the cells rapidly coordinate amino acid uptake for cell growth.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Fator de Crescimento Epidérmico/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Transporte Biológico/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Células PC-3 , Fosfoproteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
20.
Exp Eye Res ; 178: 160-175, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30290165

RESUMO

Spred, like Sprouty (Spry) and also Sef proteins, have been identified as important regulators of receptor tyrosine kinase (RTK)-mediated MAPK/ERK-signaling in various developmental systems, controlling cellular processes such as proliferation, migration and differentiation. Spreds are widely expressed during early embryogenesis, and in the eye lens, become more localised in the lens epithelium with later development, overlapping with other antagonists including Spry. Given the synexpression of Spreds and Spry in lens, in order to gain a better understanding of their specific roles in regulating growth factor mediated-signaling and cell behavior, we established and characterised lines of transgenic mice overexpressing Spred1 or Spred2, specifically in the lens. This overexpression of Spreds resulted in a small lens phenotype during ocular morphogenesis, retarding its growth by compromising epithelial cell proliferation and fiber differentiation. These in situ findings were shown to be dependent on the ability of Spreds to suppress MAPK-signaling, in particular FGF-induced ERK1/2-signaling in lens cells. This was validated in vitro using lens epithelial explants, that highlighted the overlapping role of Spreds with Spry2, but not Spry1. This study provides insights into the putative function of Spreds and Spry in situ, some overlapping and some distinct, and their importance in regulating lens cell proliferation and fiber differentiation contributing to lens and eye growth.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Epiteliais/citologia , Cristalino/crescimento & desenvolvimento , Proteínas Repressoras/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Adenoviridae/genética , Animais , Western Blotting , Fatores de Crescimento de Fibroblastos/farmacologia , Técnica Indireta de Fluorescência para Anticorpo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...