Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Imaging ; 8(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35448215

RESUMO

The Union-Retire CCA (UR-CCA) algorithm started a new paradigm for connected components analysis. Instead of using directed tree structures, UR-CCA focuses on connectivity. This algorithmic change leads to a reduction in required memory, with no end-of-row processing overhead. In this paper we describe a hardware architecture based on UR-CCA and its realisation on an FPGA. The memory bandwidth and pipelining challenges of hardware UR-CCA are analysed and resolved. It is shown that up to 36% of memory resources can be saved using the proposed architecture. This translates directly to a smaller device for an FPGA implementation.

2.
J Imaging ; 5(4)2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-34460483

RESUMO

Single-pass connected components analysis (CCA) algorithms suffer from a time overhead to resolve labels at the end of each image row. This work demonstrates how this overhead can be eliminated by replacing the conventional raster scan by a zig-zag scan. This enables chains of labels to be correctly resolved while processing the next image row. The effect is faster processing in the worst case with no end of row overheads. CCA hardware architectures using the novel algorithm proposed in this paper are, therefore, able to process images at higher throughput than other state-of-the-art methods while reducing the hardware requirements. The latency introduced by the conversion from raster scan to zig-zag scan is compensated for by a new method of detecting object completion, which enables the feature vector for completed connected components to be output at the earliest possible opportunity.

3.
J Imaging ; 5(5)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34460491

RESUMO

Nine articles have been published in this Special Issue on image processing using field programmable gate arrays (FPGAs). The papers address a diverse range of topics relating to the application of FPGA technology to accelerate image processing tasks. The range includes: Custom processor design to reduce the programming burden; memory management for full frames, line buffers, and image border management; image segmentation through background modelling, online K-means clustering, and generalised Laplacian of Gaussian filtering; connected components analysis; and visually lossless image compression.

4.
IEEE Trans Image Process ; 26(5): 2116-2126, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28237927

RESUMO

A real-time image filtering technique is proposed which could result in faster implementation for fingerprint image enhancement. One major hurdle associated with fingerprint filtering techniques is the expensive nature of their hardware implementations. To circumvent this, a modified anisotropic Gaussian filter is efficiently adopted in hardware by decomposing the filter into two orthogonal Gaussians and an oriented line Gaussian. An architecture is developed for dynamically controlling the orientation of the line Gaussian filter. To further improve the performance of the filter, the input image is homogenized by a local image normalization. In the proposed structure, for a middle-range reconfigurable FPGA, both parallel compute-intensive and real-time demands were achieved. We manage to efficiently speed up the image-processing time and improve the resource utilization of the FPGA. Test results show an improved speed for its hardware architecture while maintaining reasonable enhancement benchmarks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA