Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
Rev Sci Instrum ; 93(4): 043502, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489931

RESUMO

Plasma density measurements are key to a wide variety of high-energy-density (HED) and laboratory astrophysics experiments. We present a creative application of photonic Doppler velocimetry (PDV) from which time- and spatially resolved electron density measurements can be made. PDV has been implemented for the first time in close proximity, ∼6 cm, to the high-intensity radiation flux produced by a z-pinch dynamic hohlraum on the Z-machine. Multiple PDV probes were incorporated into the photoionized gas cell platform. Two probes, spaced 4 mm apart, were used to assess plasma density and uniformity in the central region of the gas cell during the formation of the plasma. Electron density time histories with subnanosecond resolution were extracted from PDV measurements taken from the gas cells fielded with neon at 15 Torr. As well, a null shot with no gas fill in the cell was fielded. A major achievement was the low noise high-quality measurements made in the harsh environment produced by the mega-joules of x-ray energy emitted at the collapse of the z-pinch implosion. To evaluate time dependent radiation induced effects in the fiber optic system, two PDV noise probes were included on either side of the gas cell. The success of this alternative use of PDV demonstrates that it is a reliable, precise, and affordable new electron density diagnostic for radiation driven experiments and more generally HED experiments.

2.
Phys Rev E ; 104(3-2): 035202, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654098

RESUMO

We report experimental and modeling results for the charge state distribution of laboratory photoionized neon plasmas in the first systematic study over nearly an order of magnitude range of ionization parameter ξ∝F/N_{e}. The range of ξ is achieved by flexibility in the experimental platform to adjust either the x-ray drive flux F at the sample or the electron number density N_{e} or both. Experimental measurements of photoionized plasma conditions over such a range of parameters enable a stringent test of atomic kinetics models used within codes that are applied to photoionized plasmas in the laboratory and astrophysics. From experimental transmission data, ion areal densities are extracted by spectroscopic analysis that is independent of atomic kinetics modeling. The measurements reveal the net result of the competition between photon-driven ionization and electron-driven recombination atomic processes as a function of ξ as it affects the charge state distribution. Results from radiation-hydrodynamics modeling calculations with detailed inline atomic kinetics modeling are compared with the experimental results. There is good agreement in the mean charge and overall qualitative similarities in the trends observed with ξ but significant quantitative differences in the fractional populations of individual ions.

3.
Rev Sci Instrum ; 92(8): 083512, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470416

RESUMO

Laboratory experiments typically test opacity models by measuring spectrally resolved transmission of a sample using bright backlight radiation. A potential problem is that any unaccounted background signal contaminating the spectrum will artificially reduce the inferred opacity. Methods developed to measure background signals in opacity experiments at the Sandia Z facility are discussed. Preliminary measurements indicate that backgrounds are 9%-11% of the backlight signal at wavelengths less than 10 Å. Background is thus a relatively modest correction for all Z opacity data published to date. Future work will determine how important background is at longer wavelengths.

4.
Phys Rev E ; 101(5-1): 051201, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32575250

RESUMO

We discuss the experimental and modeling results for the x-ray heating and temperature of laboratory photoionized plasmas. A method is used to extract the electron temperature based on the analysis of transmission spectroscopy data that is independent of atomic kinetics modeling. The results emphasized the critical role of x-ray heating and radiation cooling in determining the energy balance of the plasma. They also demonstrated the dramatic impact of photoexcitation on excited-state populations, line emissivity, and radiation cooling. Modeling calculations performed with astrophysical codes significantly overestimated the measured temperature.

5.
Phys Rev Lett ; 122(23): 235001, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298873

RESUMO

The first systematic study of opacity dependence on atomic number at stellar interior temperatures is used to evaluate discrepancies between measured and modeled iron opacity [J. E. Bailey et al., Nature (London) 517, 56 (2015)NATUAS0028-083610.1038/nature14048]. High-temperature (>180 eV) chromium and nickel opacities are measured with ±6%-10% uncertainty, using the same methods employed in the previous iron experiments. The 10%-20% experiment reproducibility demonstrates experiment reliability. The overall model-data disagreements are smaller than for iron. However, the systematic study reveals shortcomings in models for density effects, excited states, and open L-shell configurations. The 30%-45% underestimate in the modeled quasicontinuum opacity at short wavelengths was observed only from iron and only at temperature above 180 eV. Thus, either opacity theories are missing physics that has nonmonotonic dependence on the number of bound electrons or there is an experimental flaw unique to the iron measurement at temperatures above 180 eV.

6.
Rev Sci Instrum ; 89(10): 10F117, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399839

RESUMO

Acid phthalate crystals such as KAP crystals are a method of choice to record x-ray spectra in the soft x-ray regime (E ∼ 1 keV) using the large (001) 2d = 26.63 Šspacing. Reflection from many other planes is possible, and knowledge of the 2d spacing, reflectivity, and resolution for these reflections is necessary to evaluate whether they hinder or help the measurements. Burkhalter et al. [J. Appl. Phys., 52, 4379 (1981)] showed that the (013) reflection has efficiency comparable to the 2nd order reflection (002), and it can overlap the main first order reflection when the crystal bending axis ( b -axis) is contained in the dispersion plane, thus contaminating the main (001) measurement in a convex crystal geometry. We present a novel spectrograph concept that makes these asymmetric reflections helpful by setting the crystal b -axis perpendicular to the dispersion plane. In such a case, asymmetric reflections do not overlap with the main (001) reflection and each reflection can be used as an independent spectrograph. Here we demonstrate an achieved spectral range of 0.8-13 keV with a prototype setup. The detector measurements were reproduced with a 3D ray-tracing code.

7.
Phys Rev Lett ; 119(7): 075001, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28949679

RESUMO

The interpretation of x-ray spectra emerging from x-ray binaries and active galactic nuclei accreted plasmas relies on complex physical models for radiation generation and transport in photoionized plasmas. These models have not been sufficiently experimentally validated. We have developed a highly reproducible benchmark experiment to study spectrum formation from a photoionized silicon plasma in a regime comparable to astrophysical plasmas. Ionization predictions are higher than inferred from measured absorption spectra. Self-emission measured at adjustable column densities tests radiation transport effects, demonstrating that the resonant Auger destruction assumption used to interpret black hole accretion spectra is inaccurate.

8.
Phys Rev E ; 95(6-1): 063206, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709238

RESUMO

Iron opacity calculations presently disagree with measurements at an electron temperature of ∼180-195 eV and an electron density of (2-4)×10^{22}cm^{-3}, conditions similar to those at the base of the solar convection zone. The measurements use x rays to volumetrically heat a thin iron sample that is tamped with low-Z materials. The opacity is inferred from spectrally resolved x-ray transmission measurements. Plasma self-emission, tamper attenuation, and temporal and spatial gradients can all potentially cause systematic errors in the measured opacity spectra. In this article we quantitatively evaluate these potential errors with numerical investigations. The analysis exploits computer simulations that were previously found to reproduce the experimentally measured plasma conditions. The simulations, combined with a spectral synthesis model, enable evaluations of individual and combined potential errors in order to estimate their potential effects on the opacity measurement. The results show that the errors considered here do not account for the previously observed model-data discrepancies.

9.
Rev Sci Instrum ; 87(11): 11D502, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910652

RESUMO

The Advanced Light Source beamline-9.3.1 x-rays are used to calibrate the rocking curve of bent potassium acid phthalate (KAP) crystals in the 2.3-4.5 keV photon-energy range. Crystals are bent on a cylindrically convex substrate with a radius of curvature ranging from 2 to 9 in. and also including the flat case to observe the effect of bending on the KAP spectrometric properties. As the bending radius increases, the crystal reflectivity converges to the mosaic crystal response. The X-ray Oriented Programs (xop) multi-lamellar model of bent crystals is used to model the rocking curve of these crystals and the calibration data confirm that a single model is adequate to reproduce simultaneously all measured integrated reflectivities and rocking-curve FWHM for multiple radii of curvature in both 1st and 2nd order of diffraction.

10.
Phys Rev E ; 93(2): 023202, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26986427

RESUMO

Recently, frequency-resolved iron opacity measurements at electron temperatures of 170-200 eV and electron densities of (0.7-4.0)×10(22)cm(-3) revealed a 30-400% disagreement with the calculated opacities [J. E. Bailey et al., Nature (London) 517, 56 (2015)]. The discrepancies have a high impact on astrophysics, atomic physics, and high-energy density physics, and it is important to verify our understanding of the experimental platform with simulations. Reliable simulations are challenging because the temporal and spatial evolution of the source radiation and of the sample plasma are both complex and incompletely diagnosed. In this article, we describe simulations that reproduce the measured temperature and density in recent iron opacity experiments performed at the Sandia National Laboratories Z facility. The time-dependent spectral irradiance at the sample is estimated using the measured time- and space-dependent source radiation distribution, in situ source-to-sample distance measurements, and a three-dimensional (3D) view-factor code. The inferred spectral irradiance is used to drive 1D sample radiation hydrodynamics simulations. The images recorded by slit-imaged space-resolved spectrometers are modeled by solving radiation transport of the source radiation through the sample. We find that the same drive radiation time history successfully reproduces the measured plasma conditions for eight different opacity experiments. These results provide a quantitative physical explanation for the observed dependence of both temperature and density on the sample configuration. Simulated spectral images for the experiments without the FeMg sample show quantitative agreement with the measured spectral images. The agreement in spectral profile, spatial profile, and brightness provides further confidence in our understanding of the backlight-radiation time history and image formation. These simulations bridge the static-uniform picture of the data interpretation and the dynamic-gradient reality of the experiments, and they will allow us to quantitatively assess the impact of effects neglected in the data interpretation.

11.
Rev Sci Instrum ; 86(4): 043504, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25933859

RESUMO

The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.

12.
Nature ; 517(7532): 56-9, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25557711

RESUMO

Nearly a century ago it was recognized that radiation absorption by stellar matter controls the internal temperature profiles within stars. Laboratory opacity measurements, however, have never been performed at stellar interior conditions, introducing uncertainties in stellar models. A particular problem arose when refined photosphere spectral analysis led to reductions of 30-50 per cent in the inferred amounts of carbon, nitrogen and oxygen in the Sun. Standard solar models using the revised element abundances disagree with helioseismic observations that determine the internal solar structure using acoustic oscillations. This could be resolved if the true mean opacity for the solar interior matter were roughly 15 per cent higher than predicted, because increased opacity compensates for the decreased element abundances. Iron accounts for a quarter of the total opacity at the solar radiation/convection zone boundary. Here we report measurements of wavelength-resolved iron opacity at electron temperatures of 1.9-2.3 million kelvin and electron densities of (0.7-4.0) × 10(22) per cubic centimetre, conditions very similar to those in the solar region that affects the discrepancy the most: the radiation/convection zone boundary. The measured wavelength-dependent opacity is 30-400 per cent higher than predicted. This represents roughly half the change in the mean opacity needed to resolve the solar discrepancy, even though iron is only one of many elements that contribute to opacity.

13.
Rev Sci Instrum ; 85(11): 11D603, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430179

RESUMO

Experimental tests are in progress to evaluate the accuracy of the modeled iron opacity at solar interior conditions [J. E. Bailey et al., Phys. Plasmas 16, 058101 (2009)]. The iron sample is placed on top of the Sandia National Laboratories z-pinch dynamic hohlraum (ZPDH) radiation source. The samples are heated to 150-200 eV electron temperatures and 7× 10(21)-4× 10(22) cm(-3) electron densities by the ZPDH radiation and backlit at its stagnation [T. Nagayama et al., Phys. Plasmas 21, 056502 (2014)]. The backlighter attenuated by the heated sample plasma is measured by four spectrometers along ±9° with respect to the z-pinch axis to infer the sample iron opacity. Here, we describe measurements of the source-to-sample distance that exploit the parallax of spectrometers that view the half-moon-shaped sample from ±9°. The measured sample temperature decreases with increased source-to-sample distance. This distance must be taken into account for understanding the sample heating.

14.
Rev Sci Instrum ; 83(10): 10D714, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126888

RESUMO

The pinned optically aligned diagnostic dock (PODD) is a multi-configuration diagnostic platform designed to measure x-ray emission on the Z facility. The PODD houses two plasma emission acquisition (PEA) systems, which are aligned with a set of precision machined pins. The PEA systems are modular, allowing a single diagnostic housing to support several different diagnostics. The PEA configurations fielded to date include both time-resolved and time-integrated, 1D spatially resolving, elliptical crystal spectrometers, and time-integrated, 1D spatially resolving, convex crystal spectrometers. Additional proposed configurations include time-resolved, monochromatic mirrored pinhole imagers and arrays of filtered x-ray diodes, diamond photo-conducting diode detectors, and bolometers. The versatility of the PODD system will allow the diagnostic configuration of the Z facility to be changed without significantly adding to the turn-around time of the machine. Additionally, the PODD has been designed to allow instrument setup to be completed entirely off-line, leaving only a refined alignment process to be performed just prior to a shot, which is a significant improvement over the instrument the PODD replaces. Example data collected with the PODD are presented.

15.
Rev Sci Instrum ; 83(10): 10E128, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126949

RESUMO

Experiments have been performed at Sandia National Laboratories Z-facility to validate iron opacity models relevant to the solar convection/radiation zone boundary. Sample conditions were measured by mixing Mg with the Fe and using Mg K-shell line transmission spectra, assuming that the plasma was uniform. We develop a spectral model that accounts for hypothetical gradients, and compute synthetic spectra to quantitatively evaluate the plasma gradient size that can be diagnosed. Two sample designs are investigated, assuming linear temperature and density gradients. First, Mg uniformly mixed with Fe enables temperature gradients greater than 10% to be detected. The second design uses Mg mixed into one side and Al mixed into the other side of the sample in an attempt to more accurately infer the sample gradient. Both temperature and density gradients as small as a few percent can be detected with this design. Experiments have successfully recorded spectra with the second design. In future research, the spectral model will be used to place bounds on gradients that exist in Z opacity experiments.

16.
Rev Sci Instrum ; 83(10): 10E133, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126954

RESUMO

High quality absorption spectroscopy measurements were recently achieved at the Sandia National Laboratories Z facility in the soft x-ray range. Detailed spectral resolution knowledge is a key requirement for their interpretation. We present a methodology for measuring the wavelength dependent crystal spectral resolution, with a particular focus on the 7-17 Å range. We apply this procedure to the case of 1st order resolution of a potassium acid phthalate (KAP) convex crystal spectrometer. One calibration issue is that inferring the crystal resolution requires that the x-ray source emission feature widths and spectral profiles are known. To this aim, we resolve Manson x-ray source Si, Al, and Mg Kα line profiles using a KAP crystal spectrometer in 2nd order to achieve relatively high resolution. This information is exploited to measure 1st order KAP resolving powers λ∕Δλ∼1100-1300 in the 7-10 Å wavelength range.

17.
Prim Care Diabetes ; 6(1): 67-73, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22225755

RESUMO

AIMS: Cardiovascular disease is the main cause of morbidity and mortality in type 2 diabetes (T2DM), at huge cost to the NHS. We investigated the potential effect on population cardiovascular risk and associated costs of single and multi-factorial intervention, to target levels, in individuals with T2DM. METHODS: Baseline population means and proportions for cardiovascular risk factors were calculated for 159 patients with T2DM from 3 general practices. Predicted 10year cardiovascular risk, and associated costs were calculated using the LIP2687 risk calculator, based on Framingham and UKPDS equations. Systolic blood pressure, HbA(1C), total cholesterol and HDL-cholesterol were altered to NICE and SIGN target levels and the model run again. The difference in outcomes was observed. RESULTS: 45%, 76% and 38% of patients met NICE targets for cholesterol, systolic blood pressure and HbA1c, respectively. As expected, comparing the two guidelines, fewer patients met the 'stricter' targets (P=0.0001). Treatment-to-target produced no significant difference in cardiovascular risk or costs, although greater reductions in outcomes were seen with multi-factorial intervention. CONCLUSION: This small study suggests that intervention in only those patients with the highest cardiovascular risk brings little reduction in population cardiovascular risk and associated health costs. Multi-factorial intervention in all patients with T2DM, regardless of baseline values, is likely to bring greater reductions. This raises the question as to whether the current emphasis on treatment to target should be modified to encourage multi-factorial intervention in all patients with T2DM, even those with baseline values below target levels.


Assuntos
Doenças Cardiovasculares/economia , Doenças Cardiovasculares/mortalidade , Diabetes Mellitus Tipo 2/economia , Diabetes Mellitus Tipo 2/mortalidade , Angiopatias Diabéticas/economia , Angiopatias Diabéticas/mortalidade , Doença das Coronárias/economia , Doença das Coronárias/mortalidade , Análise Custo-Benefício , Feminino , Custos de Cuidados de Saúde/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Morbidade , Infarto do Miocárdio/economia , Infarto do Miocárdio/mortalidade , Guias de Prática Clínica como Assunto , Fatores de Risco , Comportamento de Redução do Risco , Distribuição por Sexo , Fumar/economia , Fumar/epidemiologia , Acidente Vascular Cerebral/economia , Acidente Vascular Cerebral/mortalidade , Reino Unido/epidemiologia
18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(5 Pt 2): 056408, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22181529

RESUMO

The observation of Doppler splitting in K-shell x-ray lines emitted from optically thin dopants is used to infer implosion velocities of up to 70 cm/µs in wire-array and gas-puff Z pinches at drive currents of 15-20 MA. These data can benchmark numerical implosion models, which produce reasonable agreement with the measured velocity in the emitting region. Doppler splitting is obscured in lines with strong opacity, but red-shifted absorption produced by the cooler halo of material backlit by the hot core assembling on axis can be used to diagnose velocity in the trailing mass.


Assuntos
Física/métodos , Absorção , Algoritmos , Desenho de Equipamento , Magnetismo , Movimento (Física) , Espectrofotometria/métodos , Fatores de Tempo , Água/química , Raios X
19.
Rev Sci Instrum ; 81(10): 10E324, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034022

RESUMO

We discuss the processing of x-ray absorption spectra from photoionized plasma experiments at Z. The data was recorded with an imaging spectrometer equipped with two elliptically bent potassium acid phthalate (KAP) crystals. Both time-integrated and time-resolved data were recorded. In both cases, the goal is to obtain the transmission spectra for quantitative analysis of plasma conditions.

20.
Rev Sci Instrum ; 81(10): 10E518, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034046

RESUMO

We are attempting to measure the transmission of iron on Z at plasma temperatures and densities relevant to the solar radiation and convection zone boundary. The opacity data published by us to date has been taken at an electron density about a factor of 10 below the 9×10(22)/cm(3) electron density of this boundary. We present results of two-dimensional (2D) simulations of the heating and expansion of an opacity sample driven by the dynamic Hohlraum radiation source on Z. The aim of the simulations is to design foil samples that provide opacity data at increased density. The inputs or source terms for the simulations are spatially and temporally varying radiation temperatures with a Lambertian angular distribution. These temperature profiles were inferred on Z with on-axis time-resolved pinhole cameras, x-ray diodes, and bolometers. A typical sample is 0.3 µm of magnesium and 0.078 µm of iron sandwiched between 10 µm layers of plastic. The 2D LASNEX simulations indicate that to increase the density of the sample one should increase the thickness of the plastic backing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...