Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769366

RESUMO

Electrophilic halogenation is a widely used tool employed by medicinal chemists to either pre-functionalize molecules for further diversity or incorporate a halogen atom into drugs or drug-like compounds to solve metabolic problems or modulate off-target effects. Current methods to increase the power of halogenation rely on either the invention of new reagents or activating commercially available reagents with various additives such as Lewis or Brønsted acids, Lewis bases and hydrogen-bonding activators. There is a high demand for new reagents that can halogenate otherwise unreactive compounds under mild conditions. Here we report the invention of a class of halogenating reagents based on anomeric amides, taking advantage of the energy stored in the pyramidalized nitrogen of N-X anomeric amides as a driving force. These robust halogenating methods are compatible with a variety of functional groups and heterocycles, as exemplified on over 50 compounds (including 13 gram-scale examples and 1 flow chemistry scale-up).

2.
Environ Microbiol ; 25(12): 3512-3526, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667903

RESUMO

The Duluth Complex (DC) contains sulfide-rich magmatic intrusions that represent one of the largest known economic deposits of copper, nickel, and platinum group elements. Previous work showed that microbial communities associated with experimentally-weathered DC waste rock and tailings were dominated by uncultivated taxa and organisms not typically associated with mine waste. However, those experiments were designed for kinetic testing and do not necessarily represent the conditions expected for long-term environmental weathering. We used 16S rRNA gene methods to characterize the microbial communities present on the surfaces of naturally-weathered and historically disturbed outcrops of DC material. Rock surfaces were dominated by diverse uncultured Ktedonobacteria, Acetobacteria, and Actinobacteria, with abundant algae and other phototrophs. These communities were distinct from microbial assemblages from experimentally-weathered DC rocks, suggesting different energy and nutrient resources in environmental samples. Sulfide mineral incubations performed with and without algae showed that photosynthetic microorganisms could have an inhibitory effect on autotrophic populations, resulting in slightly lower sulfate release and differences in dominant microorganisms. The microbial assemblages from these weathered outcrops show how communities develop during weathering of sulfide-rich DC rocks and represent baseline data that could evaluate the effectiveness of future reclamation of waste produced by large-scale mining operations.


Assuntos
Microbiota , Gerenciamento de Resíduos , RNA Ribossômico 16S/genética , Minerais , Microbiota/genética , Sulfetos
3.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 6): 575-577, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37288457

RESUMO

The title compound {systematic name: bis-[2-(1,3-dioxoisoindol-2-yl)eth-yl]aza-nium chloride dihydrate}, C20H18N3O4 +·Cl-·2H2O, is a phthalimide-protected polyamine that was synthesized by a previous method. It was characterized by ESI-MS, 1H NMR, and FT-IR. Crystals were grown from a solution of H2O and 0.1 M HCl. The central nitro-gen atom is protonated and forms hydrogen bonds with the chloride ion and a water mol-ecule. The two phthalimide units make a dihedral angle of 22.07 (3)°. The crystal packing features a hydrogen-bond network, two-coordinated chloride, and off-set π-π stacking.

4.
Chem Sci ; 14(4): 1018-1026, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36755719

RESUMO

Multivalency plays a key role in achieving strong, yet reversible interactions in nature, and provides critical chemical organization in biological recognition processes. Chemists have taken an interest in designing multivalent synthetic assemblies to both better understand the underlying principles governing these interactions, and to build chemical tools that either enhance or prevent such recognition events from occurring in biology. Rationally tailoring synthetic strategies to achieve the high level of chemical control and tunability required to mimic these interactions, however, is challenging. Here, we introduce a systematic and modular synthetic approach to the design of well-defined molecular multivalent protein-binding constructs that allows for control over size, morphology, and valency. A series of supramolecular mono-, bi-, and tetrametallic Fe(ii) complexes featuring a precise display of peripheral saccharides was prepared through coordination-driven self-assembly from simple building blocks. The molecular assemblies are fully characterized, and we present the structural determination of one complex in the series. The mannose and maltose-appended assemblies display strong multivalent binding to model lectin, Concanavalin A (K d values in µM), where the strength of the binding is a direct consequence of the number of saccharide units decorating the molecular periphery. This versatile synthetic strategy provides chemical control while offering an easily accessible approach to examine important design principles governing structure-function relationships germane to biological recognition and binding properties.

5.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36715153

RESUMO

The uptake and storage of extracellular orthophosphate (Pi) by polyphosphate (polyP) accumulating bacteria may contribute to mineral dissolution in the oral cavity. To test the effect of potential inhibitors of polyP kinases on Rothia dentocariosa, gallein (0, 25, 50, and 100 µM) and fluoride (0, 50, and 100 ppm) were added to R. dentocariosa cultures grown in brain-heart infusion broth. At a late log growth phase (8 h), extracellular Pi was measured using an ascorbic acid assay, and polyP was isolated from bacterial cells treated with RNA/DNAases using a neutral phenol/chloroform extraction. Extracts were hydrolyzed and quantified as above. Gallein and fluoride had minor effects on bacterial growth with NaF having a direct effect on media pH. Gallein (≥25 µM) and fluoride (≥50 ppm) attenuated the bacterial drawdown of extracellular Pi by 56.7% (P < 0.05) and 37.3% (P < 0.01). There was a corresponding polyP synthesis decrease of 73.2% (P < 0.0001) from gallein and 83.1% (P < 0.0001) from fluoride. Attenuated total reflectance-Fourier-transform infrared spectroscopy validated the presence of polyP and its reduced concentration in R. dentocariosa bacterial cells following gallein and fluoride treatment. Rothia dentocariosa can directly change extracellular Pi and accumulate intracellular polyP, but the mechanism is attenuated by gallein and NaF.


Assuntos
Actinomycetales , Fluoretos , Polifosfatos , Boca/microbiologia
6.
Angew Chem Int Ed Engl ; 62(9): e202211794, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36524997

RESUMO

A flurry of recent research has centered on harnessing the power of nickel catalysis in organic synthesis. These efforts have been bolstered by contemporaneous development of well-defined nickel (pre)catalysts with diverse structure and reactivity. In this report, we present ten different bench-stable, 18-electron, formally zero-valent nickel-olefin complexes that are competent pre-catalysts in various reactions. Our investigation includes preparations of novel, bench-stable Ni(COD)(L) complexes (COD=1,5-cyclooctadiene), in which L=quinone, cyclopentadienone, thiophene-S-oxide, and fulvene. Characterization by NMR, IR, single-crystal X-ray diffraction, cyclic voltammetry, thermogravimetric analysis, and natural bond orbital analysis sheds light on the structure, bonding, and properties of these complexes. Applications in an assortment of nickel-catalyzed reactions underscore the complementary nature of the different pre-catalysts within this toolkit.

7.
Dalton Trans ; 51(5): 1927-1935, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35019931

RESUMO

We report the synthesis and characterization of a new series of permanently porous, three-dimensional metal-organic frameworks (MOFs), M-HAF-2 (M = Fe, Ga, or In), constructed from tetratopic, hydroxamate-based, chelating linkers. The structure of M-HAF-2 was determined by three-dimensional electron diffraction (3D ED), revealing a unique interpenetrated hcb-a net topology. This unusual topology is enabled by the presence of free hydroxamic acid groups, which lead to the formation of a diverse network of cooperative interactions comprising metal-hydroxamate coordination interactions at single metal nodes, staggered π-π interactions between linkers, and H-bonding interactions between metal-coordinated and free hydroxamate groups. Such extensive, multimodal interconnectivity is reminiscent of the complex, noncovalent interaction networks of proteins and endows M-HAF-2 frameworks with high thermal and chemical stability and allows them to readily undergo postsynthetic metal ion exchange (PSE) between trivalent metal ions. We demonstrate that M-HAF-2 can serve as versatile porous materials for ionic separations, aided by one-dimensional channels lined by continuously π-stacked aromatic groups and H-bonding hydroxamate functionalities. As an addition to the small group of hydroxamic acid-based MOFs, M-HAF-2 represents a structural merger between MOFs and hydrogen-bonded organic frameworks (HOFs) and illustrates the utility of non-canonical metal-coordinating functionalities in the discovery of new bonding and topological patterns in reticular materials.

8.
Geobiology ; 20(1): 79-97, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34337850

RESUMO

Modern carbonate tufa towers in the alkaline (~pH 9.5) Big Soda Lake (BSL), Nevada, exhibit rapid precipitation rates (exceeding 3 cm/year) and host diverse microbial communities. Geochemical indicators reveal that carbonate precipitation is, in part, promoted by the mixing of calcium-rich groundwater and carbonate-rich lake water, such that a microbial role for carbonate precipitation is unknown. Here, we characterize the BSL microbial communities and evaluate their potential effects on carbonate precipitation that may influence fast carbonate precipitation rates of the active tufa mounds of BSL. Small subunit rRNA gene surveys indicate a diverse microbial community living endolithically, in interior voids, and on tufa surfaces. Metagenomic DNA sequencing shows that genes associated with metabolisms that are capable of increasing carbonate saturation (e.g., photosynthesis, ureolysis, and bicarbonate transport) are abundant. Enzyme activity assays revealed that urease and carbonic anhydrase, two microbial enzymes that promote carbonate precipitation, are active in situ in BSL tufa biofilms, and urease also increased calcium carbonate precipitation rates in laboratory incubation analyses. We propose that, although BSL tufas form partially as a result of water mixing, tufa-inhabiting microbiota promote rapid carbonate authigenesis via ureolysis, and potentially via bicarbonate dehydration and CO2 outgassing by carbonic anhydrase. Microbially induced calcium carbonate precipitation in BSL tufas may generate signatures preserved in the carbonate microfabric, such as stromatolitic layers, which could serve as models for developing potential biosignatures on Earth and elsewhere.


Assuntos
Carbonatos , Microbiota , Biofilmes , Carbonato de Cálcio/química , Precipitação Química , Lagos
9.
PLoS One ; 16(11): e0258124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34818329

RESUMO

Due to their lithotrophic metabolisms, morphological complexity and conspicuous appearance, members of the Beggiatoaceae have been extensively studied for more than 100 years. These bacteria are known to be primarily sulfur-oxidizing autotrophs that commonly occur in dense mats at redox interfaces. Their large size and the presence of a mucous sheath allows these cells to serve as sites of attachment for communities of other microorganisms. But little is known about their individual niche preferences and attached microbiomes, particularly in marine environments, due to a paucity of cultivars and their prevalence in habitats that are difficult to access and study. Therefore, in this study, we compare Beggiatoaceae strain composition, community composition, and geochemical profiles collected from sulfidic sediments at four marine stations off the coast of Namibia. To elucidate community members that were directly attached and enriched in both filamentous Beggiatoaceae, namely Ca. Marithioploca spp. and Ca. Maribeggiatoa spp., as well as non-filamentous Beggiatoaceae, Ca. Thiomargarita spp., the Beggiatoaceae were pooled by morphotype for community analysis. The Beggiatoaceae samples collected from a highly sulfidic site were enriched in strains of sulfur-oxidizing Campylobacterota, that may promote a more hospitable setting for the Beggiatoaceae, which are known to have a lower tolerance for high sulfide to oxygen ratios. We found just a few host-specific associations with the motile filamentous morphotypes. Conversely, we detected 123 host specific enrichments with non-motile chain forming Beggiatoaceae. Potential metabolisms of the enriched strains include fermentation of host sheath material, syntrophic exchange of H2 and acetate, inorganic sulfur metabolism, and nitrite oxidation. Surprisingly, we did not detect any enrichments of anaerobic ammonium oxidizing bacteria as previously suggested and postulate that less well-studied anaerobic ammonium oxidation pathways may be occurring instead.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Microbiota , Enxofre/metabolismo , Geografia , Namíbia , Análise de Componente Principal , RNA Ribossômico 16S/genética
10.
J Sep Sci ; 44(19): 3654-3664, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34324250

RESUMO

Fast, cheap, and simple separation of lipids and hydrocarbons can currently be achieved using thin-layer chromatography. Here, we describe an alternative planar chromatographic method using polyvinylidene difluoride membranes as the stationary phase. The procedure has the same advantages of thin-layer chromatography over other expensive and time-consuming techniques, such as high-performance liquid chromatography or gas chromatography. Polyvinylidene difluoride membranes, however, also provide an immediate support for analyte development via immunodetection, are easy to manipulate, and potentially increase the performance of other detection methods. We show that polyvinylidene difluoride membranes are compatible with a variety of solvents that can migrate by capillarity and redistribute analytes between the membrane and the solvent according to their relative affinities, providing a chromatographic separation. We directly test the developed membranes by immunoblotting using anti-squalene antibodies that cross-react with acyclic isoprenoids. Separations of crude oils and plant extracts under different solvent conditions show the potential to resolve hydrocarbon group types and also to provide characteristic fingerprints of plant pigments and squalene degradation products. Polyvinylidene difluoride membranes prove useful as a stationary phase for planar chromatography and for the subsequent immunodetection of the separated compounds, providing a new and simple chromatographic technique to analyze lipids and hydrocarbons.

11.
Nat Protoc ; 16(7): 3264-3297, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34050338

RESUMO

The self-assembly of proteins into sophisticated multicomponent assemblies is a hallmark of all living systems and has spawned extensive efforts in the construction of novel synthetic protein architectures with emergent functional properties. Protein assemblies in nature are formed via selective association of multiple protein surfaces through intricate noncovalent protein-protein interactions, a challenging task to accurately replicate in the de novo design of multiprotein systems. In this protocol, we describe the application of metal-coordinating hydroxamate (HA) motifs to direct the metal-mediated assembly of polyhedral protein architectures and 3D crystalline protein-metal-organic frameworks (protein-MOFs). This strategy has been implemented using an asymmetric cytochrome cb562 monomer through selective, concurrent association of Fe3+ and Zn2+ ions to form polyhedral cages. Furthermore, the use of ditopic HA linkers as bridging ligands with metal-binding protein nodes has allowed the construction of crystalline 3D protein-MOF lattices. The protocol is divided into two major sections: (1) the development of a Cys-reactive HA molecule for protein derivatization and self-assembly of protein-HA conjugates into polyhedral cages and (2) the synthesis of ditopic HA bridging ligands for the construction of ferritin-based protein-MOFs using symmetric metal-binding protein nodes. Protein cages are analyzed using analytical ultracentrifugation, transmission electron microscopy and single-crystal X-ray diffraction techniques. HA-mediated protein-MOFs are formed in sitting-drop vapor diffusion crystallization trays and are probed via single-crystal X-ray diffraction and multi-crystal small-angle X-ray scattering measurements. Ligand synthesis, construction of HA-mediated assemblies, and post-assembly analysis as described in this protocol can be performed by a graduate-level researcher within 6 weeks.


Assuntos
Ácidos Hidroxâmicos/química , Metais/química , Proteínas/química , Área Sob a Curva , Cisteína/química , Ferritinas/química , Ferritinas/ultraestrutura , Ligantes , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/ultraestrutura , Modelos Moleculares , Proteínas/ultraestrutura
12.
Geobiology ; 19(3): 261-277, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33524239

RESUMO

Micro-organisms have long been implicated in the construction of stromatolites. Yet, establishing a microbial role in modern stromatolite growth via molecular analysis is not always straightforward because DNA in stromatolites can have multiple origins. For example, the genomic material could represent the microbes responsible for the construction of the stromatolite (i.e., "builders"), microbes that inhabited the structure after it was built (i.e., "tenants"), or microbes/organic matter that were passively incorporated after construction from the water column or later diagenetic fluids (i.e., "squatters"). Disentangling the role of micro-organisms in stromatolite construction, already difficult in modern systems, becomes more difficult as organic signatures degrade, and their context is obscured. To evaluate our ability to accurately decipher the role of micro-organisms in stromatolite formation in geologically recent settings, 16/18S SSU rRNA gene sequences were analyzed from three systems where the context of growth was well understood: (a) an actively growing stromatolite from a silicic hot spring in Yellowstone National Park, Wyoming, where the construction of the structure is controlled by cyanobacteria; (b) a mixed carbonate and silica precipitate from Little Hot Creek, a hot spring in the Long Valley Caldera of California that has both abiogenic and biogenic components to accretion; and (c) a near-modern lacustrine carbonate stromatolite from Walker Lake, Nevada that is likely abiogenic. In all cases, the largest percentage of recovered DNA sequences, especially when focused on the deeper portions of the structures, belonged to either the tenant or squatter communities, not the actual builders. Once removed from their environmental context, correct interpretation of biology's role in stromatolite morphogenesis was difficult. Because high-throughput genomic analysis may easily lead to incorrect assumptions even in these modern and near-modern structures, caution must be exercised when interpreting micro-organismal involvement in the construction of accretionary structures throughout the rock record.


Assuntos
Cianobactérias , Migrantes , Cianobactérias/genética , Sedimentos Geológicos , Humanos , Nevada , Wyoming
13.
ISME J ; 15(7): 2043-2056, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33574572

RESUMO

Carbonate rocks at marine methane seeps are commonly colonized by sulfur-oxidizing bacteria that co-occur with etch pits that suggest active dissolution. We show that sulfur-oxidizing bacteria are abundant on the surface of an exemplar seep carbonate collected from Del Mar East Methane Seep Field, USA. We then used bioreactors containing aragonite mineral coupons that simulate certain seep conditions to investigate plausible in situ rates of carbonate dissolution associated with sulfur-oxidizing bacteria. Bioreactors inoculated with a sulfur-oxidizing bacterial strain, Celeribacter baekdonensis LH4, growing on aragonite coupons induced dissolution rates in sulfidic, heterotrophic, and abiotic conditions of 1773.97 (±324.35), 152.81 (±123.27), and 272.99 (±249.96) µmol CaCO3 • cm-2 • yr-1, respectively. Steep gradients in pH were also measured within carbonate-attached biofilms using pH-sensitive fluorophores. Together, these results show that the production of acidic microenvironments in biofilms of sulfur-oxidizing bacteria are capable of dissolving carbonate rocks, even under well-buffered marine conditions. Our results support the hypothesis that authigenic carbonate rock dissolution driven by lithotrophic sulfur-oxidation constitutes a previously unknown carbon flux from the rock reservoir to the ocean and atmosphere.


Assuntos
Metano , Rhodobacteraceae , Carbonatos , Sedimentos Geológicos , Oxirredução , Solubilidade , Enxofre
14.
Environ Sci Technol ; 54(22): 14265-14274, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33138371

RESUMO

Methylmercury (MeHg) is a bioaccumulative neurotoxin produced by certain sulfate-reducing bacteria and other anaerobic microorganisms. Because microorganisms differ in their capacity to methylate mercury, the abundance and distribution of methylating populations may determine MeHg production in the environment. We compared rates of MeHg production and the distribution of hgcAB genes in epilimnetic sediments from a freshwater lake that were experimentally amended with sulfate levels from 7 to 300 mg L-1. The most abundant hgcAB sequences were associated with clades of Methanomicrobia, sulfate-reducing Deltaproteobacteria, Spirochaetes, and unknown environmental sequences. The hgcAB+ communities from higher sulfate amendments were less diverse and had relatively more Deltaproteobacteria, whereas the communities from lower amendments were more diverse with a larger proportion of hgcAB sequences affiliated with other clades. Potential methylation rate constants varied 52-fold across the experiment. Both potential methylation rate constants and % MeHg were the highest in sediments from the lowest sulfate amendments, which had the most diverse hgcAB+ communities and relatively fewer hgcAB genes from clades associated with sulfate reduction. Although pore water sulfide concentration covaried with hgcAB diversity across our experimental sulfate gradient, major changes in the community of hgcAB+ organisms occurred prior to a significant buildup of sulfide in pore waters. Our results indicate that methylating communities dominated by diverse anaerobic microorganisms that do not reduce sulfate can produce MeHg as effectively as communities dominated by sulfate-reducing populations.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Bactérias/genética , Sedimentos Geológicos , Lagos , Mercúrio/análise , Sulfatos
15.
J Am Chem Soc ; 142(45): 19402-19410, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33124805

RESUMO

The mechanical and functional properties of many crystalline materials depend on cooperative changes in lattice arrangements in response to external perturbations. However, the flexibility and adaptiveness of crystalline materials are limited. Additionally, the bottom-up, molecular-level design of crystals with desired dynamic and mechanical properties at the macroscopic level remains a considerable challenge. To address these challenges, we had previously integrated mesoporous, cubic ferritin crystals with hydrogel networks, resulting in hybrid materials (polymer-integrated crystals or PIX) which could undergo dramatic structural changes while maintaining crystalline periodicity and display efficient self-healing. The dynamics and mechanics of these ferritin-PIX were devoid of directionality, which is an important attribute of many molecular and macroscopic materials/devices. In this study, we report that such directionality can be achieved through the use of ferritin crystals with anisotropic symmetries (rhombohedral or trigonal), which enable the templated formation of patterned hydrogel networks in crystallo. The resulting PIX expand and contract anisotropically without losing crystallinity, undergo prompt bending motions in response to stimuli, and self-heal efficiently, capturing some of the essential features of sophisticated biological devices like skeletal muscles.

16.
J Am Chem Soc ; 142(41): 17265-17270, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32972136

RESUMO

We recently introduced protein-metal-organic frameworks (protein-MOFs) as chemically designed protein crystals, composed of ferritin nodes that predictably assemble into 3D lattices upon coordination of various metal ions and ditopic, hydroxamate-based linkers. Owing to their unique tripartite construction, protein-MOFs possess extremely sparse lattice connectivity, suggesting that they might display unusual thermomechanical properties. Leveraging the synthetic modularity of ferritin-MOFs, we investigated the temperature-dependent structural dynamics of six distinct frameworks. Our results show that the thermostabilities of ferritin-MOFs can be tuned through the metal component or the presence of crowding agents. Our studies also reveal a framework that undergoes a reversible and isotropic first-order phase transition near-room temperature, corresponding to a 4% volumetric change within 1 °C and a hysteresis window of ∼10 °C. This highly cooperative crystal-to-crystal transformation, which stems from the soft crystallinity of ferritin-MOFs, illustrates the advantage of modular construction strategies in discovering tunable-and unpredictable-material properties.


Assuntos
Ferritinas/química , Estruturas Metalorgânicas/química , Cristalização , Fenômenos Mecânicos , Modelos Moleculares , Transição de Fase , Conformação Proteica , Relação Estrutura-Atividade , Temperatura de Transição , Zinco/química
17.
Microb Biotechnol ; 13(6): 1877-1888, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32720477

RESUMO

Microbial precipitation of calcium carbonate is a widespread environmental phenomenon that has diverse engineering applications, from building and soil restoration to carbon sequestration. Urease-mediated ureolysis and CO2 (de)hydration by carbonic anhydrase (CA) are known for their potential to precipitate carbonate minerals, yet many environmental microbial community studies rely on marker gene or metagenomic approaches that are unable to determine in situ activity. Here, we developed fast and cost-effective tests for the field detection of urease and CA activity using pH-sensitive strips inside microcentrifuge tubes that change colour in response to the reaction products of urease (NH3 ) and CA (CO2 ). The urease assay proved sensitive and useful in the field to detect in situ activity in biofilms from a saline lake, a series of calcareous fens, and ferrous springs, finding relatively high urease activity in lake samples. Incubations of lake microbes with urea resulted in significantly higher CaCO3 precipitation compared to incubations with a urease inhibitor, showing that the rapid assay indicated an on-site active metabolism potentially mediating carbonate precipitation. The CA assay, however, showed less sensitivity compared to the urease test. While its sensitivity limits its utility, the assay may still be useful as a preliminary indicator given the paucity of other means for detecting CA activity in the field. Field urease, and potentially CA, activity assays complement molecular approaches and facilitate the search for carbonate-precipitating microbes and their in situ activity, which could be applied toward agriculture, engineering and carbon sequestration technologies.


Assuntos
Anidrases Carbônicas , Urease , Biofilmes , Carbonato de Cálcio , Ureia
18.
J Am Chem Soc ; 142(15): 6907-6912, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32223143

RESUMO

We report the rational design and synthesis of a water-stable metal-organic framework (MOF), Fe-HAF-1, constructed from supramolecular, Fe3+-hydroxamate-based polyhedra with mononuclear metal nodes. Owing to its chelate-based construction, Fe-HAF-1 displays exceptional chemical stability in organic and aqueous solvents over a wide pH range (pH 1-14), including in the presence of 5 M NaOH. Despite the charge neutrality of the Fe3+-tris(hydroxamate) centers, Fe-HAF-1 crystals are negatively charged above pH 4. This unexpected property is attributed to the formation of defects during crystallization that results in uncoordinated hydroxamate ligands or hydroxide-coordinated Fe centers. The anionic nature of Fe-HAF-1 crystals enables selective adsorption of positively charged ions in aqueous solution, resulting in efficient separation of organic dyes and other charged species in a size-selective fashion. Fe-HAF-1 presents a new addition to a small group of chelate-based MOFs and provides a rare framework whose 3D connectivity is exclusively formed by metal-hydroxamate coordination.


Assuntos
Estruturas Metalorgânicas/química , Quelantes , Humanos , Ligantes
19.
Nature ; 578(7793): 172-176, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31969701

RESUMO

Many proteins exist naturally as symmetrical homooligomers or homopolymers1. The emergent structural and functional properties of such protein assemblies have inspired extensive efforts in biomolecular design2-5. As synthesized by ribosomes, proteins are inherently asymmetric. Thus, they must acquire multiple surface patches that selectively associate to generate the different symmetry elements needed to form higher-order architectures1,6-a daunting task for protein design. Here we address this problem using an inorganic chemical approach, whereby multiple modes of protein-protein interactions and symmetry are simultaneously achieved by selective, 'one-pot' coordination of soft and hard metal ions. We show that a monomeric protein (protomer) appropriately modified with biologically inspired hydroxamate groups and zinc-binding motifs assembles through concurrent Fe3+ and Zn2+ coordination into discrete dodecameric and hexameric cages. Our cages closely resemble natural polyhedral protein architectures7,8 and are, to our knowledge, unique among designed systems9-13 in that they possess tightly packed shells devoid of large apertures. At the same time, they can assemble and disassemble in response to diverse stimuli, owing to their heterobimetallic construction on minimal interprotein-bonding footprints. With stoichiometries ranging from [2 Fe:9 Zn:6 protomers] to [8 Fe:21 Zn:12 protomers], these protein cages represent some of the compositionally most complex protein assemblies-or inorganic coordination complexes-obtained by design.


Assuntos
Modelos Moleculares , Proteínas/química , Complexos de Coordenação/química
20.
Chem Sci ; 11(38): 10523-10528, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34123187

RESUMO

In this report, we explore the internal structural features of polyMOFs consisting of equal mass ratios of metal-coordinating poly(benzenedicarboxylic acid) blocks and non-coordinating poly(ethylene glycol) (PEG) blocks. The studies reveal alternating lamellae of metal-rich, crystalline regions and metal-deficient non-crystalline polymer, which span the length of hundreds of nanometers. Polymers consisting of random PEG blocks, PEG end-blocks, or non-coordinating poly(cyclooctadiene) (COD) show similar alternation of metal-rich and metal-deficient regions, indicating a universal self-assembly mechanism. A variety of techniques were employed to interrogate the internal structure of the polyMOFs, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and small-angle synchrotron X-ray scattering (SAXS). Independent of the copolymer architecture or composition, the internal structure of the polyMOF crystals showed similar lamellar self-assembly at single-nanometer length scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...