Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 46(11): 1785-1796, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29922953

RESUMO

Pressure distribution of the native ovine knee meniscus was compared to a medial meniscectomy and three treatment conditions including a suture reattachment of the native tissue, an allograft, and a novel thermoplastic elastomer hydrogel (TPE) construct. The objective of this study was to assess the efficacy of a novel TPE hydrogel construct at restoring joint pressure and distribution. Limbs were loaded in uniaxial compression at 45°, 60°, and 75° flexion and from 0 to 181 kg. The medial meniscectomy decreased contact area by approximately 50% and doubled the mean and maximum pressure reading for the medial hemijoint. No treatment condition tested within this study was able to fully restore medial joint contact area and pressures to the native condition. A decrease in lateral contact area and increase in pressures with the meniscectomy was also seen; and to some degree, all reattachment and replacement conditions including the novel TPE hydrogel replacement helped to restore lateral pressures. Although the TPE construct did not perform as well as hoped in the medial compartment, it performed as well as, if not better, than the other reattachment and replacement options in the lateral. Further work is necessary to determine the best anchoring and attachment methods.


Assuntos
Elastômeros , Hidrogéis , Articulação do Joelho/fisiopatologia , Menisco/fisiopatologia , Próteses e Implantes , Animais , Feminino , Articulação do Joelho/patologia , Meniscectomia , Menisco/patologia , Ovinos , Suporte de Carga
2.
J Mech Behav Biomed Mater ; 79: 341-347, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29425534

RESUMO

Hydrogels are a class of synthetic biomaterials composed of a polymer network that swells with water and as such they have both an elastic and viscous component making them ideal for soft tissue applications. This study characterizes the compressive, tensile, and shear properties of a thermoplastic elastomer (TPE) hydrogel and compares the results to published literature values for soft tissues such as articular cartilage, the knee meniscus, and intervertebral disc components. The results show the TPE hydrogel material is viscoelastic, strain rate dependent, has similar surface and bulk properties, displays minimal damping under dynamic load, and has tension-compression asymmetry. When compared to other soft tissues it has a comparable equilibrium compressive modulus of approximately 0.5MPa and shear modulus of 0.2MPa. With a tensile modulus of only 0.2MPa though, the TPE hydrogel is inferior in tension to most collagen based soft tissues. Additional steps may be necessary to reinforce the hydrogel system and increase tensile modulus depending on the desired soft tissue application. It can be concluded that this material could be a viable option for soft tissue replacements.


Assuntos
Materiais Biocompatíveis , Elastômeros , Hidrogéis , Fenômenos Biomecânicos , Cartilagem Articular , Força Compressiva , Disco Intervertebral , Menisco , Resistência ao Cisalhamento , Estresse Mecânico
4.
ACS Biomater Sci Eng ; 4(11): 3854-3863, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33429608

RESUMO

Synthesis of hydrogel networks capable of accurately replicating the biomechanical demands of musculoskeletal soft tissues continues to present a formidable materials science challenge. Current systems are hampered by combinations of limited moduli at biomechanically relevant strains, inefficiencies driven by undesirable hysteresis and permanent fatigue, and recovery dynamics too slow to accommodate rapid cycling prominent in most biomechanical loading profiles. Here, we report on a novel paradigm in hydrogel design based on prefabrication of an efficient nanoscale network architecture using the melt-state self-assembly of amphiphilic block copolymers. Rigorous characterization and mechanical testing reveal that swelling of these preformed networks produces hydrogels with physiologically relevant moduli and water compositions, negligible hysteresis, subsecond elastic recovery rates, and unprecedented resistance to fatigue over hundreds of thousands of compression cycles. Furthermore, by relying only on simple thermoplastic processing to form these nanostructured networks, the synthetic complexities common to most solution-based hydrogel fabrication strategies are completely avoided.

5.
Molecules ; 22(9)2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28927009

RESUMO

A synthetic method that taps into the facile Lewis base (LB)→Lewis acid (LA) adduct forming reaction between the semiconducting polymeric LB and all carbon LA C60 for the construction of covalently linked donor-acceptor dyads and brush polymer of dyads is reported. The polymeric LB is built on poly(3-hexylthiophene) (P3HT) macromers containing either an alkyl or vinyl imidazolium end group that can be readily converted into the N-heterocyclic carbene (NHC) LB site, while the brush polymer architecture is conveniently constructed via radical polymerization of the macromer P3HT with the vinyl imidazolium chain end. Simply mixing of such donor polymeric LB with C60 rapidly creates linked P3HT-C60 dyads and brush polymer of dyads in which C60 is covalently linked to the NHC junction connecting the vinyl polymer main chain and the brush P3HT side chains. Thermal behaviors, electronic absorption and emission properties of the resulting P3HT-C60 dyads and brush polymer of dyads have been investigated. The results show that a change of the topology of the P3HT-C60 dyad from linear to brush architecture enhances the crystallinity and Tm of the P3HT domain and, along with other findings, they indicate that the brush polymer architecture of donor-acceptor domains provides a promising approach to improve performances of polymer-based solar cells.


Assuntos
Fulerenos/química , Ácidos de Lewis/química , Bases de Lewis/química , Tiofenos/química , Carbono/química , Transporte de Elétrons , Imidazóis/química , Espectroscopia de Ressonância Magnética/métodos , Transição de Fase , Polimerização , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Termodinâmica
6.
J Biomed Mater Res A ; 105(10): 2722-2728, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28556414

RESUMO

Understanding how human meniscal tissue responds to loading regimes mimetic of daily life as well as how it compares to larger animal models is critical in the development of a functionally accurate synthetic surrogate. Seven human and eight ovine cadaveric meniscal specimens were regionally sectioned into cylinders 5 mm in diameter and 3 mm thick along with 10 polystyrene-b-polyethylene oxide block copolymer-based thermoplastic elastomer (TPE) hydrogels. Samples were compressed to 12% strain at 1 Hz for 5000 cycles, unloaded for 24 h, and then retested. No differences were found within each group between test one and test two. Human and ovine tissue exhibited no regional dependency (p < 0.05). Human samples relaxed quicker than ovine tissue or the TPE hydrogel with modulus values at cycle 50 not significantly different from cycle 5000. Ovine menisci were found to be similar to human menisci in relaxation profile but had significantly higher modulus values (3.44 MPa instantaneous and 0.61 MPa after 5000 cycles compared with 1.97 and 0.11 MPa found for human tissue) and significantly different power law fit coefficients. The TPE hydrogel had an initial modulus of 0.58 MPa and experienced less than a 20% total relaxation over the 5000. Significant differences in the magnitude of compressive modulus between human and ovine menisci were observed, however the relaxation profiles were similar. Although statistically different than the native tissues, modulus values of the TPE hydrogel material were similar to those of the human and ovine menisci, making it a material worth further investigation for use as a synthetic replacement. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2722-2728, 2017.


Assuntos
Materiais Biocompatíveis/química , Elastômeros/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Menisco/química , Polietilenoglicóis/química , Poliestirenos/química , Animais , Fenômenos Biomecânicos , Força Compressiva , Humanos , Teste de Materiais , Ovinos , Temperatura
7.
Polymers (Basel) ; 9(4)2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-30970820

RESUMO

Two poly(3-hexylthiophene) (P3HT) macromers containing a donor polymer with a polymerizable methacrylate (MA) end group, P3HT-CH2-MA and P3HT-(CH2)2-MA, have been synthesized, and P3HT-(CH2)2-MA has been successfully homopolymerized and copolymerized with methyl methacrylate (MMA) into stereoregular brush polymers and graft copolymers, respectively, using chiral ansa-zirconocene catalysts. Macromer P3HT-CH2-MA is too sterically hindered to polymerize by the current Zr catalysts, but macromer P3HT-(CH2)2-MA is readily polymerizable via either homopolymerization or copolymerization with MMA in a stereospecific fashion with both C2-ligated zirconocenium catalyst 1 and Cs-ligated zirconocenium catalyst 2. Thus, highly isotactic (with mm% ≥ 92%) and syndiotactic (with rr% ≥ 93%) brush polymers, it-PMA-g-P3HT and st-PMA-g-P3HT, as well as well-defined stereoregular graft copolymers with different grafted P3HT densities, it-P(M)MA-g-P3HT and st-P(M)MA-g-P3HT, have been synthesized using this controlled coordination-addition polymerization system under ambient conditions. These stereoregular brush polymers and graft copolymers exhibit both thermal (glass and melting) transitions with Tg and Tm values corresponding to transitions within the stereoregular P(M)MA and crystalline P3HT domains. Acceptor molecules such as C60 can be effectively encapsulated inside the helical cavity of st-P(M)MA-g-P3HT to form a unique supramolecular helical crystalline complex, thus offering a novel strategy to control the donor/acceptor solar cell domain morphology.

8.
Soft Matter ; 11(37): 7345-55, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26271163

RESUMO

Tethered micelle hydrogel networks based on the solution assembly of amphiphilic ABA-type block copolymers are prevalent throughout the hydrogel literature. However, the mechanical response of such systems is often determined largely by the integrity of the micellar core produced during solution assembly, not by the elements of the network structure upon which it is based. Using a solvent-free fabrication method based on the melt-state self-assembly of sphere-forming polystyrene-b-poly(ethylene oxide) (SO) diblock and SOS triblock copolymers blends, we have been able to produce tethered micelle hydrogel networks with fully vitrified cores that enable the elements of the network structure to determine the mechanical response. Here, we explore the impact of using PEO midblocks of different lengths within the SOS tethers, in an effort to elucidate the role played by water content, tether concentration, and tether length in mechanical property determination. In doing so, we were able to establish coronal layer overlap as the primary contributing factor in regulating the dynamic elastic moduli exhibited by tethered micelle systems. Variation of either tether concentration or tether length could be used to tune the degree of coronal layer overlap, enabling direct and accurate control over hydrogel mechanical response. While such control is likely a unique feature of the melt-state fabrication approach applied here, the conclusions with respect to the role of coronal layer overlap and tether (bridging) concentration in determining the mechanical potential of the network should be applicable to all ABA-type tethered micelle systems, regardless of fabrication methodology.


Assuntos
Hidrogéis/química , Micelas , Polietilenoglicóis/química , Poliestirenos/química , Estresse Mecânico
9.
J Biomech ; 48(8): 1407-11, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25770751

RESUMO

Healthy menisci function within the joint to prevent the underlying articular cartilage from excessive loads. Understanding how mechanical properties of menisci change with degeneration can drive future therapeutic studies to prevent this degeneration. Thus, the goal of this study was to characterize both compressive and tensile moduli of human menisci with varying degrees of gross damage due to osteoarthritis (OA). Twenty four paired menisci were collected from total knee joint replacement patients and the menisci were graded on a scale from 0-4 according to level of gross meniscal degeneration with 0=normal and 4=full tissue maceration. Each meniscus was then sectioned into anterior and posterior regions and subjected to indentation relaxation tests. Samples were sliced into 1mm thick strips, made into dumbbells using a custom punch, and pulled to failure. Significant decreases in instantaneous compressive modulus were seen in the lateral posterior region between grades 0 and 1 (36% decrease) and in the medial anterior regions between grades 1 and 2 (67% decrease) and 1 and 3 (72% decrease). Changes in equilibrium modulus where seen in the lateral anterior region between grades 1 and 2 (35% decrease), lateral posterior region between grades 0-2 (41% decrease), and medial anterior regions between grades 1 and 2 (59% decrease), 1 and 3 (67% decrease), 2 and 4 (54% decrease), and 3 and 4 (42% decrease). No significant changes were observed in tensile modulus across all regions and degenerative grades. The results of this study demonstrate the compressive moduli are affected even in early stages of gross degeneration, and continue to decrease with increased deterioration. However, osteoarthritic menisci retain a tensile modulus similar to that of previously reported healthy menisci. This study highlights progressive changes in meniscal mechanical compressive integrity as level of gross tissue degradation increases, and thus, early interventions should focus on restoring or preserving compressive integrity.


Assuntos
Cartilagem Articular/fisiopatologia , Meniscos Tibiais/fisiopatologia , Fenômenos Biomecânicos , Cartilagem Articular/patologia , Módulo de Elasticidade , Feminino , Humanos , Masculino , Meniscos Tibiais/patologia , Pessoa de Meia-Idade , Osteoartrite/patologia , Osteoartrite/fisiopatologia
10.
ACS Macro Lett ; 1(1): 105-109, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35578463

RESUMO

Many supramolecular motifs self-assemble into nanorods, forming the basis of the mechanical properties of supramolecular polymers. When integrated as end-caps in a bifunctional telechelic polymer, the motifs can phase segregate into the same or into another nanorod. In the latter case, a functional cross-link is formed by the bridging chain that strengthens the polymer network. This study introduces a supramolecular polymeric system that consists of two different nanorod forming supramolecular motifs. When end-capped to monofunctional polymers, these supramolecular motifs self-assemble in an orthogonal fashion in two separate types of noncross-linked nanorods, resulting in a viscous liquid lacking macroscopic properties. The addition of 15 mol % of an α,ω-telechelic polymer containing both supramolecular motifs, each on one end, transforms this viscous sticky liquid to a solid material with elastomeric properties due to network formation between the two types of nanorods.

11.
Nano Lett ; 11(3): 998-1001, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21280666

RESUMO

Asymmetric polystyrene-polylactide (PS-PLA) bottlebrush block copolymers have been shown to self-assemble into a cylindrical morphology with large domain spacings. PLA cylinders can be selectively etched out of the shear-aligned polymer monoliths to generate nanoporous materials with an average cylindrical pore diameter of 55 nm. The remaining bottlebrush backbone provides a functional, hydrophilic coating inside the nanopores. This methodology significantly expands the range of pore sizes attainable in block copolymer based nanoporous materials.

12.
Faraday Discuss ; 128: 149-62, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15658772

RESUMO

Ordered nanoporous plastics with hydrophilic pore surfaces were prepared by the degradative removal of polylactide from a self-organised, multi-component composite containing two block copolymers: polystyrene-polylactide and polystyrene-polyethylene oxide. The solid-state characterization of blends containing up to 12 wt.% polyethylene oxide was consistent with nanoscopic cylinders of mixed polyethylene oxide and polylactide hexagonally packed in a polystyrene matrix. Orientation of these materials through simple channel die processing resulted in good cylinder alignment. Subsequent methanolysis/hydrolysis of the polylactide component gave nanoporous polystyrene with polyethylene oxide coated pores. The resulting nanoporous materials were able to imbibe water, in contrast to nanoporous polystyrene with no polyethylene oxide component.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA